Python Auto-ML Package for Tabular Datasets

Overview
Tabular-AutoML

Tabular-AutoML

AutoML Package for tabular datasets

Tabular dataset tuning is now hassle free!

Run one liner command and get best tuning and processed dataset in a go.

Python Git

Used Python Libraries :
lightgbm numpy numpy numpy

Installation & Usage


  1. Create a Virtual Environment : Tutorial
  2. Clone the repository.
  3. Open the directory with cmd.
  4. Copy this command in terminal to install dependencies.
pip install -r requirements.txt
  1. Installing the requirements.txt may generate some error due to outdated MS Visual C++ Build. You can fix this problem using this.
  2. First check the parser variable that has to be passed with all customizations.
>>> python -m tab_automl.main --help
usage: main.py [-h] -d  -t  -tf  [-p] [-f] [-spd] [-sfd] [-sm]

automl hyper parameters

optional arguments:
  -h, --help            show this help message and exit
  -d , --data-source    File path
  -t , --problem-type   Problem Type , currently supporting *regression* or *classification*
  -tf , --target-feature
                        Target feature inside the data
  -p , --pre-proc       If data processing is required
  -f , --fet-eng        If feature engineering is required
  -spd , --save-proc-data
                        Save the processed data
  -sfd , --save-fet-data
                        Save the feature engineered data
  -sm , --save-model    Save the best trained model
  1. Now run the command with your custom data, problem type and target feature
>> # For Classification Problem >>> python -m tab_automl.main -d "your custom data scource\custom_data.csv" -t "classification" -tf "your_custom_target_feature" -spd "true" -sfd "true" -sm "true"">
>>> # For Regression Problem
>>> python -m tab_automl.main -d "your custom data scource\custom_data.csv" -t "regression" -tf "your_custom_target_feature" -spd "true" -sfd "true" -sm "true"

>>> # For Classification Problem
>>> python -m tab_automl.main -d "your custom data scource\custom_data.csv" -t "classification" -tf "your_custom_target_feature" -spd "true" -sfd "true" -sm "true"

Contributing Guidelines


  1. Coment on the issue on which you want to work.
  2. If you get assigned, fork the repository.
  3. Create a new branch which should be named on your github user_id , e.g. sagnik1511.
  4. Update the changes on that branch.
  5. Create a PR (Pull request) to the main branch of the parent repository.
  6. The PR title should named like this [Issue Number] Heading of the issue.
  7. Describe the changes you have done with proper reasons.

Contributors


  1. Sagnik Roy : sagnik1511

If you like the project, do

Also follow me on GitHub , Kaggle , LinkedIn

Thank You for Visiting :)

Owner
Sagnik Roy
Data Science Intern @ Argoid • Video Games & Machine Vision attracts me!
Sagnik Roy
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022