Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Overview

Conditional Smiles! (SmileCVAE)

About

Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-strength degree to produce conditional generation of synthetic faces with a given smile degree.

Installation

  1. Clone the repository git clone https://github.com/raulorteg/SmileCVAE
  2. Create virtual environment:
  • Update pip python -m pip install pip --upgrade
  • Install virtualenv using pip python -m pip install virtualenv
  • Create Virtual environment virtualenv SmileCVAE
  • Activate Virtual environment (Mac OS/Linux: source SmileCVAE/bin/activate, Windows: SmileCVAE\Scripts\activate)
  • (Note: to deactivate environemt run deactivate)
  1. Install requirements on the Virtual environment python -m pip install -r requirements.txt

Results

Training

In the .gif below the reconstruction for a group of 32 faces from the dataset can be visualized for all epochs. Training

Below, the final reconstruction of the CVAE for 32 faces of the dataset side by side to those original 32 images, for comparison.

Conditional generation

Using synthetic.py, we can sample from the prior distribution of the CVAE, concatenate the vector with our desired ecnoding of the smile degree and let the CVAE decode this sampled noise into a synthetic face of the desired smile degree. The range of smile-degree encodings in the training set is [-1,+1], where +1 is most smiley, -1 is most non-smiley. Below side to side 64 synthetic images for encodings -0.5, +0.5 are shown produced with this method.

Forcing smiles

With the trained model, one can use the pictures from the training set and instead of feeding in the smile-degree encode of the corresponding picture we can fix an encoding or shift it by a factor to force the image a smile/non smile. Below this is done for 32 picture of the training set, on the op the original 32 images are shown, below the reconstruction with their actual encoding, and then we shift the encoding by +0.5, +0.7, -0.5, -0.7 to change the smile degree in the original picture (zoom in to see in detail!). Finally the same diagram is now shown for a single picture.

The Dataset

The images of the faces come from UTKFace Dataset. However the images do not have any encoding of a continuous degree of "smiley-ness". This "smile-strength" degree is produced by creating a slideshow of the images and exposing them to three subjects (me and a couple friends), by registering wheather the face was classified as smiley or non-smiley we encourage the subjects to answer as fast as possible so as to rely on first impression and the reaction time is registered.

Notes: Bias in the Dataset

Its interesting to see that the when generating synthetic images with encodings < 0 (non-happy) the faces look more male-like and when generating synthetic images with encodings > 0 (happy) they tend to be more female-like. This is more apparent at the extremes, see the Note below. The original dataset although doesnt contains a smile degree encode, it has information of the image encoded in the filename, namely "gender" and "smile" as boolean values. Using this information then I can go and see if there was a bias in the dataset. In the piechart below the distribution of gender, and smile are shown. From there we can see that that although there are equals amount of men and women in the dataset, there were more non-smiley men than smiley men, and the bias of the synthetic generation may come from this unbalance.

Notes: Extending the encoding of smile-degree over the range for synthetic faces

Altough the range of smile-strength in the training set is [-1,+1], when generating synthetic images we can ask the model to generate outside of the range. But notice that then the synthetic faces become much more homogeneus, more than 64 different people it looks like small variations of the same synthetic image. Below side to side 64 synthetic images for encodings -3 (super not happy), +3 (super happy) are shown produced with this method.

References:

  • Fagertun, J., Andersen, T., Hansen, T., & Paulsen, R. R. (2013). 3D gender recognition using cognitive modeling. In 2013 International Workshop on Biometrics and Forensics (IWBF) IEEE. https://doi.org/10.1109/IWBF.2013.6547324
  • Kingma, Diederik & Welling, Max. (2013). Auto-Encoding Variational Bayes. ICLR.
  • Learning Structured Output Representation using Deep Conditional Generative Models, Kihyuk Sohn, Xinchen Yan, Honglak Lee
Owner
Raúl Ortega
Raúl Ortega
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023