Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Overview

Introduction

Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models".

In this work, we demonstrate that existing self-supervised speech model such as HuBERT, wav2vec 2.0, CPC and TERA are vulnerable to membership inference attack (MIA) and thus could reveal sensitive informations related to the training data.

Requirements

  1. Python >= 3.6
  2. Install sox on your OS
  3. Install s3prl on your OS
git clone https://github.com/s3prl/s3prl
cd s3prl
pip install -e ./
  1. Install the specific fairseq
pip install [email protected]+https://github.com//pytorch/[email protected]#egg=fairseq

Preprocessing

First, extract the self-supervised feature of utterances in each corpus according to your needs.

Currently, only LibriSpeech is available.

BASE_PATH=/path/of/the/corpus
OUTPUT_PATH=/path/to/save/feature
MODEL=wav2vec2
SPLIT=train-clean-100 # you should extract train-clean-100, dev-clean, dev-other, test-clean, test-other

python preprocess_feature_LibriSpeech.py \
    --base_path $BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --split $SPLIT

Speaker-level MIA

After extracting the features, you can apply the attack against the models using either basic attack and improved attack.

Noted that you should run the basic attack to generate the .csv file with similarity scores before performing improved attack.

Basic Attack

SEEN_BASE_PATH=/path/you/save/feature/of/seen/corpus
UNSEEN_BASE_PATH=/path/you/save/feature/of/unseen/corpus
OUTPUT_PATH=/path/to/output/results
MODEL=wav2vec2

python predefined-speaker-level-MIA.py \
    --seen_base_path $SEEN_BATH_PATH \
    --unseen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \

Improved Attack

python train-speaker-level-similarity-model.py \
    --seen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --speaker_list "${OUTPUT_PATH}/${MODEL}-customized-speaker-level-attack-similarity.csv"

python customized-speaker-level-MIA.py \
    --seen_base_path $SEEN_BATH_PATH \
    --unseen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --similarity_model_path "${OUTPUT_PATH}/customized-speaker-similarity-model-${MODEL}.pt"

Utterance-level MIA

The process for utterance-level MIA is similar to that of speaker-level:

Basic Attack

SEEN_BASE_PATH=/path/you/save/feature/of/seen/corpus
UNSEEN_BASE_PATH=/path/you/save/feature/of/unseen/corpus
OUTPUT_PATH=/path/to/output/results
MODEL=wav2vec2

python predefined-utterance-level-MIA.py \
    --seen_base_path $SEEN_BATH_PATH \
    --unseen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \

Improved Attack

python train-utterance-level-similarity-model.py \
    --seen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --speaker_list "${OUTPUT_PATH}/${MODEL}-customized-utterance-level-attack-similarity.csv"

python customized-utterance-level-MIA.py \
    --seen_base_path $SEEN_BATH_PATH \
    --unseen_base_path $UNSEEN_BATH_PATH \
    --output_path $OUTPUT_PATH \
    --model $MODEL \
    --similarity_model_path "${OUTPUT_PATH}/customized-utterance-similarity-model-${MODEL}.pt"

Citation

If you find our work useful, please cite:

Owner
Wei-Cheng Tseng
Wei-Cheng Tseng
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022