A machine learning model for analyzing text for user sentiment and determine whether its a positive, neutral, or negative review.

Overview

Sentiment Analysis on Yelp's Dataset

Author: Roberto Sanchez, Talent Path: D1 Group

Docker Deployment:

Deployment of this application can be found here hosted on AWS

Running it locally:

docker pull rsanchez2892/sentiment_analysis_app

Overview

The scope of this capstone is centered around the data processing, exploratory data analysis, and training of a model to predict sentiment on user reviews.

End goal of the model

Business Goals

Create a model to be able to be used in generating sentiment on reviews or comments found in external / internal websites to give insights on how people feel about certain topics.

This could give the company insights not easily available on sites where ratings are required or for internal use to determine sentiment on blogs or comments.

Business Applications

By utilizing this model, the business can use it for the following purposes:

External:

  • Monitoring Brand and Reputation online
  • Product Research

Internal:

  • Customer Support
  • Customer Feedback
  • Employee Satisfaction

Currently method to achieving this is by using outside resources which come at a cost and increases risk for leaking sensitive data to the public. This product will bypass these outside resources and give the company the ability to do it in house.

Model Deployment

Link: Review Analyzer

After running multiple models and comparing accuracy, I found that the LinearSVC model is a viable candidate to be used in production for analyzing reviews of services or food.

Classification Report / Confusion Matrix:

Classification Report

Technology Stack

I have been using these technologies for this project:

  • Jupyter Notebook - Version 6.3.0
    • Used for most of the data processing, EDA, and model training.
  • Python - Version 3.8.8
    • The main language this project will be done in.
  • Scikit-learn - Version 0.24
    • Utilizing metrics reports and certain models.
  • Postgres - Version 13
    • Main database application used to store this data.
  • Flask - Version 1.1.2
    • Main backend technology to host a usable version of this project to the public.
  • GitHub
    • Versioning control and online documentation
  • Heroku
    • Online cloud platform to host this application for public use

Data Processing

This capstone uses the Yelp dataset found on Kaggle which comprises of multiple files:

  • Business Data
  • Check-in Data
  • Review Data
  • Tips Data
  • User Data

Stage 1 - Read in From JSON files into Postgres

Overview

  • Read in JSON files
  • General observations on the features found in each file
  • Modifying feature names to meet Postgres naming convention
  • Normalized the data to prepare for import to Postgres
  • Saved copies of each table as CSV file for backup incase Database goes down
  • Exported data into Postgres

As stated above, Kaggle provided several JSON files with a large amount of data that needed to be stored in a location for easy access and provide a quick way to query data on the fly. As the files were read in Jupyter notebook a general observation was made to the feature names and amount each file contained to see what data I was dealing with along with the types associated with them. The business data contained a strange number of attributes that had to be broken up into separate data frames to be normalized for Postgres.

Stage 2 - Pre-Processing Data

Overview

  • Read in data from Postgres
  • IDing Null Values
  • Removing Sparse features
  • Saved data frame as a pickle to be used in model training

This stage I performed elementary data analysis where I analyze any null values, see the distribution of my ratings and review lengths.

Stage 3 - Cleaning Up Data

Overview

  • Replace contractions with expanded versions
  • Lemmatized text
  • Removed special characters, dates, emails, and URLs
  • Removed stop words
  • Remove non-english text
  • Normalized text

Exploratory Data Analysis

Analyzing Null Values in Dataset

Below is a visualization of the data provided by Kaggle showing which features have "NaN " values. Its is clear that the review ratings (review_stars) and reviews (text) are fully populated. Some of the business attributes are sparse but have enough values to be useful for other things. Note several other features were dropped in the Data Processing since they did not provide any insights for the scope of this project.

Heatmap of several million rows of data.

Looking Closer at the Ratings (review_stars)

This is a sample of 2 million rows from the original 8 million in the dataset. This distribution of ratings has a left skew on it where most of the reviews are 4 to 5 stars.

A bar graph showing the distribution of ratings between 1 to 5. there is a significant amount of 5 stars compared to 1-3 combined.

I simplified the ratings to better categorize the sentiment of the review by grouping 1 and 2 star reviews as 'negative', 3 star review as 'neutral', and 4 and 5 star reviews as 'positive'.

Simplified Barchar showing just the negative, neutral, and positive ratings

Looking Closer at the Reviews (text)

To analyze the text, I've calculated the length of each review in the sample and plotted a distribution graph showing them the number of characters of each review. The statistics were that the median review was approx. 606 characters with a range of 0 through 5000 characters.

Showing a distribution chart of the length of the reviews. Clearly the distribution skews right with a median around 400 characters.

A closer inspection on the range 0 - 2000 we can see that most of the reviews are around this general area.

A zoomed in version of the same distribution chart now focusing on 0 - 2000 characters

In order to produce a viable word cloud, I've had to process all of the text in the sample to remove special characters and stop words from NLTK to produce a viable string to be used in word cloud. Below is a visualization of all of the key words found in the positive reviews.

Created a word cloud from the positive words after cleaning

As expected, words like "perfect", "great", "good", "great place", and "highly recommend" came out on top.

A word cloud showing all the words from the negative reviews

On the negative word cloud, words like "bad", "customer service", "never", "horrible", and "awful" are appearing on the word cloud.

Model Training

Model Selection

model selection flow chart

These four models were chosen to be trained with this data. Each of these models had a pipeline created with TfidfVectorizer.

Model Training

  • Run a StratifiedKFold with a 5 fold split and analyze the average scores and classification reports
    • Get an average accuracy of the model for comparison
  • Create a single model to generate a confusion matrix
  • Test out model on a handful of examples

Below is the average metrics after running 5 fold cross validation on LinearSVC

average metrics for linearSVC model

Testing Model

After the model was trained, I fed it some reviews I found online to test out whether or not the model can properly detect the right sentiment. The following reviews are ordered as "Negative", "Neutral", and "Positive":

new_test_data = [
    "This was the worst place I've ever eaten at. The staff was rude and did not take my order until after i pulled out my wallet.",
    "The food was alright, nothing special about this place. I would recommend going elsewhere.",
    "I had a pleasent time with kimberly at the granny shack. The food was amazing and very family friendly.",
]
res = model.prediction(new_test_data)

Below is the results of the prediction, notice that the neutral review has been labeled as negative. This makes sense since the model has a poor recall for neutral reviews as shown in the classification report.

Results from the prediction

End Notes

There are some improvements to be made such as the follow:

  • Balancing the data
    • This can be seen in the confusion matrix for the candidate models and other models created that the predictions come out more positive than negative or neutral.
    • While having poor scores in the neutral category, the most important features are found in the negative and positive predictions for business applications.
  • Hyper-parametrization improvement
    • Logistic Regression and Multinomial NB models produced models within a reasonable time frame while returning reasonable scores. Random Forrest Classifier and SVM took a significant amount of time to produce just one iteration. In order to produce results from this model StratifiedKFold was not used in these two models. Changing SVM to LinearSVC improved performance dramatically and replaced the SVM model and outperformed Logistic Regression which was the original candidate model.
Owner
Roberto Sanchez
Full Stack Web Developer / Data Science Startup
Roberto Sanchez
A BERT-based reverse-dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end Quick Start C

Eu-Bin KIM 94 Dec 08, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022
Stuff related to Ben Eater's 8bit breadboard computer

8bit breadboard computer simulator This is an assembler + simulator/emulator of Ben Eater's 8bit breadboard computer. For a version with its RAM upgra

Marijn van Vliet 29 Dec 29, 2022
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
Official PyTorch implementation of SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 29, 2022
Transcribing audio files using Hugging Face's implementation of Wav2Vec2 + "chain-linking" NLP tasks to combine speech-to-text with downstream tasks like translation and summarisation.

PART 2: CHAIN LINKING AUDIO-TO-TEXT NLP TASKS 2A: TRANSCRIBE-TRANSLATE-SENTIMENT-ANALYSIS In notebook3.0, I demo a simple workflow to: transcribe a lo

Chua Chin Hon 30 Jul 13, 2022
Basic yet complete Machine Learning pipeline for NLP tasks

Basic yet complete Machine Learning pipeline for NLP tasks This repository accompanies the article on building basic yet complete ML pipelines for sol

Ivan 20 Aug 22, 2022
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022
🤖 Basic Financial Chatbot with handoff ability built with Rasa

Financial Services Example Bot This is an example chatbot demonstrating how to build AI assistants for financial services and banking with Rasa. It in

Mohammad Javad Hossieni 4 Aug 10, 2022
Natural Language Processing

NLP Natural Language Processing apps Multilingual_NLP.py start #This script is demonstartion of Mul

Ritesh Sharma 1 Oct 31, 2021
Machine translation models released by the Gourmet project

Gourmet Models Overview The Gourmet project has released several machine translation models to translate low-resource languages. This repository conta

Edinburgh NLP 5 Dec 08, 2021
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2.

Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2. It is trained (finetuned) on a curated list of approximately 45K Python (~470MB) files gathered from the

Galois Autocompleter 91 Sep 23, 2022
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
A Telegram bot to add notes to Flomo.

flomo bot 使用 Telegram 机器人发送笔记到你的 Flomo. 你需要有一台可访问 Telegram 的服务器。 Steps @BotFather 新建机器人,获取 token Flomo 官网获取 API,链接 https://flomoapp.com/mine?source=in

Zhen 44 Dec 30, 2022
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data

Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Ye

Yi-Chang Chen 5 Dec 15, 2022