Use evolutionary algorithms instead of gridsearch in scikit-learn

Overview

sklearn-deap

Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameters for your estimator. Instead of trying out every possible combination of parameters, evolve only the combinations that give the best results.

Here is an ipython notebook comparing EvolutionaryAlgorithmSearchCV against GridSearchCV and RandomizedSearchCV.

It's implemented using deap library: https://github.com/deap/deap

Install

To install the library use pip:

pip install sklearn-deap

or clone the repo and just type the following on your shell:

python setup.py install

Usage examples

Example of usage:

import sklearn.datasets
import numpy as np
import random

data = sklearn.datasets.load_digits()
X = data["data"]
y = data["target"]

from sklearn.svm import SVC
from sklearn.model_selection import StratifiedKFold

paramgrid = {"kernel": ["rbf"],
             "C"     : np.logspace(-9, 9, num=25, base=10),
             "gamma" : np.logspace(-9, 9, num=25, base=10)}

random.seed(1)

from evolutionary_search import EvolutionaryAlgorithmSearchCV
cv = EvolutionaryAlgorithmSearchCV(estimator=SVC(),
                                   params=paramgrid,
                                   scoring="accuracy",
                                   cv=StratifiedKFold(n_splits=4),
                                   verbose=1,
                                   population_size=50,
                                   gene_mutation_prob=0.10,
                                   gene_crossover_prob=0.5,
                                   tournament_size=3,
                                   generations_number=5,
                                   n_jobs=4)
cv.fit(X, y)

Output:

    Types [1, 2, 2] and maxint [0, 24, 24] detected
    --- Evolve in 625 possible combinations ---
    gen	nevals	avg     	min    	max
    0  	50    	0.202404	0.10128	0.962716
    1  	26    	0.383083	0.10128	0.962716
    2  	31    	0.575214	0.155259	0.962716
    3  	29    	0.758308	0.105732	0.976071
    4  	22    	0.938086	0.158041	0.976071
    5  	26    	0.934201	0.155259	0.976071
    Best individual is: {'kernel': 'rbf', 'C': 31622.776601683792, 'gamma': 0.001}
    with fitness: 0.976071229827

Example for maximizing just some function:

from evolutionary_search import maximize

def func(x, y, m=1., z=False):
    return m * (np.exp(-(x**2 + y**2)) + float(z))

param_grid = {'x': [-1., 0., 1.], 'y': [-1., 0., 1.], 'z': [True, False]}
args = {'m': 1.}
best_params, best_score, score_results, _, _ = maximize(func, param_grid, args, verbose=False)

Output:

best_params = {'x': 0.0, 'y': 0.0, 'z': True}
best_score  = 2.0
score_results = (({'x': 1.0, 'y': -1.0, 'z': True}, 1.1353352832366128),
 ({'x': -1.0, 'y': 1.0, 'z': True}, 1.3678794411714423),
 ({'x': 0.0, 'y': 1.0, 'z': True}, 1.3678794411714423),
 ({'x': -1.0, 'y': 0.0, 'z': True}, 1.3678794411714423),
 ({'x': 1.0, 'y': 1.0, 'z': True}, 1.1353352832366128),
 ({'x': 0.0, 'y': 0.0, 'z': False}, 2.0),
 ({'x': -1.0, 'y': -1.0, 'z': False}, 0.36787944117144233),
 ({'x': 1.0, 'y': 0.0, 'z': True}, 1.3678794411714423),
 ({'x': -1.0, 'y': -1.0, 'z': True}, 1.3678794411714423),
 ({'x': 0.0, 'y': -1.0, 'z': False}, 1.3678794411714423),
 ({'x': 1.0, 'y': -1.0, 'z': False}, 1.1353352832366128),
 ({'x': 0.0, 'y': 0.0, 'z': True}, 2.0),
 ({'x': 0.0, 'y': -1.0, 'z': True}, 2.0))
Comments
  • Added cv_results. Fixed some documentation.

    Added cv_results. Fixed some documentation.

    In init.py I added cv_results_ based on the logbook generated in _fit. This is a compatability feature with sklearn GridSearch and the like in interest of consistency.

    Other than that, I added a test file I used outside of ipython notebook which could eventually use the true python test library, and fixed some errors in the notebook which look like simple version errors.

    opened by ryanpeach 16
  • `.cv_results_` does not include info from first generation

    `.cv_results_` does not include info from first generation

    I think there's a fenceposting/off-by-one error somewhere.

    When I pass in generations_number = 1, it's actually 0-indexed, and gives me 2 generations. Similarly, if I pass in 2 generations, I actually get 3.

    Then, when I examine the cv_results_ property, I noticed that I only get the results from all generations after the first generation (the 0-indexed generation).

    This is most apparently if you set generations_number = 1.

    I looked through the code quickly, but didn't see any obvious source of it. Hopefully someone who knows the library can find it more easily!

    opened by ClimbsRocks 12
  • Better Parallelism

    Better Parallelism

    I wrote this because parallelism wasn't working on my Windows laptop. So I did some reading and found out, at least on windows, you need to declare your Pool from within a if __name__=="__main__" structure in order to prevent recurrent execution. Deap also identifies other kinds of multiprocessing maps you may want to pass to it, so now the user has every option to implement parallelism however they want by passing their "map" function to pmap.

    Yes, it's divergent from sklearn, but sklearn has a fully implemented special parallelism library for their n_jobs parameters that would be both a challenge and potentially incompatible with deap, so what I have implemented is deap's way of doing things.

    opened by ryanpeach 8
  • Error Message While Calling fit() Method

    Error Message While Calling fit() Method

    AttributeError: can't set attribute

    It pointed out the error come from fit( ) method as

    def fit(self, X, y=None): self.best_estimator_ = None --> self.best_score_ = -1 self.best_params_ = None for possible_params in self.possible_params: self.fit(X, y, possible_params) if self.refit: self.best_estimator = clone(self.estimator) self.best_estimator_.set_params(**self.best_params_) self.best_estimator_.fit(X, y)

    opened by tasyacute 8
  • Can't get attribute 'Individual'

    Can't get attribute 'Individual'

    Trying to test example code on Indian Pima Diabetes dataset in Jupyter notebook 5.0.0, Python 3.6, I'm getting an error. Kernel is busy but no processes are running. Turning on debag mode shows: ... File "c:\users\szymon\anaconda3\envs\tensorflow\lib\multiprocessing\queues.py", line 345, in get return ForkingPickler.loads(res) AttributeError: Can't get attribute 'Individual' on <module 'deap.creator' from 'c:\\users\\szymon\\anaconda3\\envs\\tensorflow\\lib\\site-packages\\deap\\creator.py'> File "c:\users\szymon\anaconda3\envs\tensorflow\lib\multiprocessing\pool.py", line 108, in worker task = get()

    opened by szymonk92 7
  • Doubts about encoding correctness

    Doubts about encoding correctness

    I have some doubts about current parameter encoding (to chromosome) correctness.

    Let's assume that we have 2 categorical parameters f1 and f2:

    Enc f1  f2
    0000 a 1
    0001 a 2
    0010 a 3
    0011 a 4
    0100 a 5
    0101 b 1
    0110 b 2
    0111 b 3
    1000 b 4
    1001 b 5
    1010 c 1
    1011 c 2
    1100 c 3
    1101 c 4
    1110 c 5
    

    If we use any crossover operator, for example let's do 2 points crossover between some points:

    (a, 4) 0011    0111 (b, 3)
                x
    (c, 3) 1100    1000 (b, 4)
    

    After crossover we've got b, but both parents don't have b as first parameter.

    opened by olologin 7
  • Can't instantiate abstract class EvolutionaryAlgorithmSearchCV with abstract methods _run_search

    Can't instantiate abstract class EvolutionaryAlgorithmSearchCV with abstract methods _run_search

    I use Python 2.7.15 to run test.py and I found an error TypeError: Can't instantiate abstract class EvolutionaryAlgorithmSearchCV with abstract methods _run_search

    Would you please help correct anything I missed, bellow is all packages I installed

    Package                            Version
    ---------------------------------- -----------
    appdirs                            1.4.3
    appnope                            0.1.0
    asn1crypto                         0.24.0
    attrs                              18.2.0
    Automat                            0.7.0
    backports-abc                      0.5
    backports.shutil-get-terminal-size 1.0.0
    bleach                             2.1.4
    certifi                            2018.8.24
    cffi                               1.11.5
    configparser                       3.5.0
    constantly                         15.1.0
    cryptography                       2.3.1
    Cython                             0.28.5
    deap                               1.2.2
    decorator                          4.3.0
    entrypoints                        0.2.3
    enum34                             1.1.6
    functools32                        3.2.3.post2
    futures                            3.2.0
    html5lib                           1.0.1
    hyperlink                          18.0.0
    idna                               2.7
    incremental                        17.5.0
    ipaddress                          1.0.22
    ipykernel                          4.10.0
    ipython                            5.8.0
    ipython-genutils                   0.2.0
    ipywidgets                         7.4.2
    Jinja2                             2.10
    jsonschema                         2.6.0
    jupyter                            1.0.0
    jupyter-client                     5.2.3
    jupyter-console                    5.2.0
    jupyter-core                       4.4.0
    MarkupSafe                         1.0
    mistune                            0.8.3
    mkl-fft                            1.0.6
    mkl-random                         1.0.1
    nbconvert                          5.3.1
    nbformat                           4.4.0
    notebook                           5.6.0
    numpy                              1.15.2
    pandas                             0.23.4
    pandocfilters                      1.4.2
    pathlib2                           2.3.2
    pexpect                            4.6.0
    pickleshare                        0.7.4
    pip                                10.0.1
    prometheus-client                  0.3.1
    prompt-toolkit                     1.0.15
    ptyprocess                         0.6.0
    pyasn1                             0.4.4
    pyasn1-modules                     0.2.2
    pycparser                          2.19
    Pygments                           2.2.0
    pyOpenSSL                          18.0.0
    python-dateutil                    2.7.3
    pytz                               2018.5
    pyzmq                              17.1.2
    qtconsole                          4.4.1
    scandir                            1.9.0
    scikit-learn                       0.20.0
    scipy                              1.1.0
    Send2Trash                         1.5.0
    service-identity                   17.0.0
    setuptools                         40.2.0
    simplegeneric                      0.8.1
    singledispatch                     3.4.0.3
    six                                1.11.0
    sklearn-deap                       0.2.2
    terminado                          0.8.1
    testpath                           0.3.1
    tornado                            5.1.1
    traitlets                          4.3.2
    Twisted                            17.5.0
    wcwidth                            0.1.7
    webencodings                       0.5.1
    wheel                              0.31.1
    widgetsnbextension                 3.4.2
    zope.interface                     4.5.0
    
    opened by dongchirua 6
  • Sklearn Depreciation

    Sklearn Depreciation

    cross_validation has been replaced with model_selection and will soon be depreciated. Already getting a warning. Tried to simply change this but they have moved a few other things around and also changed how some functions seem to fundamentally work.

    opened by ryanpeach 6
  • What does it take to parallelize the search?

    What does it take to parallelize the search?

    Great tool! Allows me to drastically expand the search space over using GridSearchCV. Really promising for deep learning, as well as standard scikit-learn interfaced ML models.

    Because I'm searching over a large space, this obviously involves training a bunch of models, and doing a lot of computations. scikit-learn's model training parallelizes this to ease the pain somewhat.

    I tried using the toolbox.register('map', pool.map) approach as described out by deap, but didn't see any parallelization.

    Is there a different approach I should take instead? Or is that a feature that hasn't been built yet? If so, what are the steps needed to get parallelization working?

    opened by ClimbsRocks 5
  • What's wrong with my datas ?

    What's wrong with my datas ?

    With the following code 👍 paramgrid = {"n_jobs": -1, "max_features":['auto','log2'], "n_estimators":[10,100,500,1000], "min_samples_split" : [2,5,10], "max_leaf_nodes" : [1,5,10,20,50] }

    #min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None

    cv = EvolutionaryAlgorithmSearchCV(estimator=RandomForestClassifier(), params=paramgrid, scoring="accuracy", cv=StratifiedKFold(y, n_folds=10), verbose=True, population_size=50, gene_mutation_prob=0.10, tournament_size=3, generations_number=10 )

    cv.fit(X, y)

    and having the followning error :

    TypeErrorTraceback (most recent call last) in () 20 ) 21 ---> 22 cv.fit(X,y)

    /root/anaconda2/lib/python2.7/site-packages/evolutionary_search/init.pyc in fit(self, X, y) 276 self.best_params_ = None 277 for possible_params in self.possible_params: --> 278 self.fit(X, y, possible_params) 279 if self.refit: 280 self.best_estimator = clone(self.estimator)

    /root/anaconda2/lib/python2.7/site-packages/evolutionary_search/init.pyc in _fit(self, X, y, parameter_dict) 301 toolbox = base.Toolbox() 302 --> 303 name_values, gene_type, maxints = _get_param_types_maxint(parameter_dict) 304 if self.gene_type is None: 305 self.gene_type = gene_type

    /root/anaconda2/lib/python2.7/site-packages/evolutionary_search/init.pyc in _get_param_types_maxint(params) 33 types = [] 34 for _, possible_values in name_values: ---> 35 if isinstance(possible_values[0], float): 36 types.append(param_types.Numerical) 37 else:

    TypeError: 'int' object has no attribute 'getitem'

    opened by M4k34B3tt3rW0r1D 4
  • Python3 compatibility is broken

    Python3 compatibility is broken

    There are two old-style print statements in __init__.py that break compatibility with Python 3.

    I added brackets to turn them into function calls and that seemed to fix it, but I have not done extensive testing to see if there are any other compatibility issues.

    opened by davekirby 4
  • ValueError when calling cv.fit() for optimising a neural network

    ValueError when calling cv.fit() for optimising a neural network

    Hi,

    I am trying to optimise a neural network (Keras, TensorFlow), but I'm getting an error: ValueError: Input contains NaN, infinity or a value too large for dtype('float32').

    I have checked my input data for NaNs, infities and large or small values. There aren't any. I have forced the input data to be np.float32 before passing it to .fit().

    I've used this algorithm before without any problems or special data prep, so I'm not sure where there error is creeping in.

    the relavent bit of the code is: codetxt.txt

    I should also say that when I manually try to just .fit() to my model, it works fine. The issue is something to do with how the cross valdation is working.

    The full traceback is:

    Traceback (most recent call last): File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/multiprocessing/pool.py", line 119, in worker result = (True, func(*args, **kwds)) File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/multiprocessing/pool.py", line 44, in mapstar return list(map(*args)) File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/site-packages/evolutionary_search/cv.py", line 104, in _evalFunction error_score=error_score)[0] File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/site-packages/sklearn/model_selection/_validation.py", line 568, in _fit_and_score test_scores = _score(estimator, X_test, y_test, scorer, is_multimetric) File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/site-packages/sklearn/model_selection/_validation.py", line 610, in _score score = scorer(estimator, X_test, y_test) File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/site-packages/sklearn/metrics/scorer.py", line 98, in call **self._kwargs) File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/site-packages/sklearn/metrics/regression.py", line 239, in mean_squared_error y_true, y_pred, multioutput) File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/site-packages/sklearn/metrics/regression.py", line 77, in _check_reg_targets y_pred = check_array(y_pred, ensure_2d=False) File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/site-packages/sklearn/utils/validation.py", line 573, in check_array allow_nan=force_all_finite == 'allow-nan') File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/site-packages/sklearn/utils/validation.py", line 56, in _assert_all_finite raise ValueError(msg_err.format(type_err, X.dtype)) ValueError: Input contains NaN, infinity or a value too large for dtype('float32'). """ The above exception was the direct cause of the following exception: Traceback (most recent call last): File "NN_GSCV-DL2.py", line 308, in grid_result = cv.fit(X_train, y_train) File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/site-packages/evolutionary_search/cv.py", line 363, in fit self._fit(X, y, possible_params) File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/site-packages/evolutionary_search/cv.py", line 453, in _fit halloffame=hof, verbose=self.verbose) File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/site-packages/deap/algorithms.py", line 150, in eaSimple fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/multiprocessing/pool.py", line 266, in map return self._map_async(func, iterable, mapstar, chunksize).get() File "/home/users/hf832176/.conda/envs/tb_env6/lib/python3.6/multiprocessing/pool.py", line 644, in get raise self._value ValueError: Input contains NaN, infinity or a value too large for dtype('float32').

    opened by tbloch1 0
  • Does not work with pipelines

    Does not work with pipelines

    For tuning a single estimator this tool is awesome. But the standard gridsearch can actually accept a pipeline as an estimator, which allows you to evaluate different classifiers as parameters.

    For some reason, this breaks with EvolutionaryAlgorithmSearchCV.

    For example, set a pipeline like this: pipe = Pipeline([ ('imputer', SimpleImputer(strategy='median')), ('scaler' , StandardScaler()), ('classify', LogisticRegression()) ])

    Then define a parameter grid to include different classifiers: param_grid_rf_big = [ {'classify': [RandomForestClassifier(),ExtraTreesClassifier()], 'classify__n_estimators': [500], 'classify__max_features': ['log2', 'sqrt', None], 'classify__min_samples_split': [2,3], 'classify__min_samples_leaf': [1,2,3], 'classify__criterion': ['gini',] } ]

    When you pass this to EvolutionaryAlgorithmSearchCV you should be able to set the estimator to 'pipe' and and the params to 'param_grid_rf_big' and let it evaluate. This works with gridsearchcv, but not with EvolutionaryAlgorithmSearchCV.

    opened by dth5 4
  • stuck after gen 1...

    stuck after gen 1...

    image

    I have some datasets where the search get stuck for ever on gen 1 for instance.. does it happen to you too? how can I figure out what is the problem? python is still running and using a lot of CPU... but after hours nothing happens. any idea what could be the issue?

    opened by fcoppey 1
Releases(0.3.0)
Owner
rsteca
rsteca
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021