ReCoin - Restoring our environment and businesses in parallel

Related tags

Text Data & NLPReCoin
Overview

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales

"Reduce Reuse Recoin"

Theme Covered:

The themes covered in this project include post pandemic restoration for both the environment, small buisnesses, and personal finance! The app pitched uses an extensivly trained AI system to detect trash and sort it to the proper bin from your smartphone. While using the app, users will be incentivized to use the app and recover the environment through the opportunity to earn points, which will be redeemable in partnering stores.

Problem Statment:

As our actions continue to damage the environment, it is important that we invest in solutions that help restore our community in more sustainable practices. Moreover, an average person creates over 4 pounds of trash a day, and the EPA has found that over 75% of the waste we create are recyclable. As garbage sorting is so niche from town-to-town, students have reportable agreed to the difficulty of accurately sorting garbage, thus causing this significant misplacement of garbage.

Our passion to make our community globally and locally more sustainable has fueled us to use artificial intelligence to develop an app that not only makes sorting garbage as easy as using Snapchat, but also rewards individuals for sorting their garbage properly.

For this reason, we would like to introduce Recoin. This intuitive app allows a person to scan any product and easily find the bin that the trash belongs based off their location. Furthermore, if they attempt to sell their product, or use our app, they will earn points which will be redeemable in partnering stores that advocate for the environment. The more the user uses the app, the more points they receive, resulting in better items to redeem in stores. With this app we will not only help recover the environment, but also increase sales in small businesses which struggled during the pandemic to recover.

About the App:

Incentive Breakdown:

Please note that these expenses are estimated expectations for potential benefit packages but are not defined yet.

We are proposing a $1 discount for participating small businesses when 100 coffee/drink cups are returned to participating restaurants. This will be easy for small companies to uphold financially, while providing a motivation for individuals to use our scanner.

Amazon costs around $0.5 to $2 on packaging, so we are proposing that Amazon provides a $15 gift card per 100 packages returned to Amazon. As the 100 packages can cost from $50 to $200, this incentive will save Amazon resources by 5 to 100 times the amount, while providing positive public perception for reusing.

As recycling plastic for 3D filament is an up-and-coming technology that can revolutionize environment sustainability, we would like to create a system where providing materials for such causes can give the individuals benefits.

Lastly, as metals become more valuable, we hope to provide recyclable metals to companies to reduce their expenses through our platform.

The next steps to this endeavor will be to provide benefits for individuals that provide batteries and electronics with some sort of incentive as well.

User Interface:

#add user stuff!!!!!!!!!!!1

Technological Specifics and Next Steps:

Frontend

----ADDDDDDDDDDDD GRAPHHHHHHHHHHHHHHHHHHHHHHHH____ We used to React.JS to develop components for the webcam footage and capture screen shots. It was also utilized to create the rest of the overall UI design.

Backend

Trash Detection AI:

On Pytorch, we utilized an open-source trash detection AI software and data, to train the trash detection system originally developed by IamAbhinav03. The system utilizes over 2500 images to train, test, and validate the system. To improve the system, we increased the number of epochs to 8 rather than 5 (number of passes the training system has completed) to train it for an additional four hours than required. This allowed the accuracy to increase by 4% more than the original system. We also modified the test train and split amounts to 70%, 10%, and 20% respectively, as more prominent AI studies have found this distribution to receive the best results.

Currently, the system is predicted to have a 94% accuracy, but in the future, we plan on using reinforcement learning in our beta testing to continuously improve our algorithm. Reinforcement learning allows for the data to be more accurate, through learning from user correction. This will allow AI to become more precise as it gains more popularity.

Other Systems:

By using Matbox API and the Google Suite/API, we will be creating maps to find recycling locations and an extensively thorough Recoin currency system that can easily be transferred to real time money for consumers and businesses.

Stakeholders:

After the completion of this project, we intend to continue to pursue the app to improve our communities’ sustainability. After looking at the demographic of interest in our school itself, we know that students will be interested in this app, not only from convenience but also through the reward system. Local cafes and Starbucks already have initiatives to improve public perspective and support the environment (i.e., using paper straws and cups), therefore supporting this new endeavor will be an interest to them. As branding is everything in a business, having a positive public perspective will increase sales.

Amazon:

As Amazon continues to be the leading online marketplace, more packages will continue to be made, which can be detrimental to the world's limited resources. We will be training the UI to track packages that are Amazon based. With such training, we would like to be able to implement a system where the packaging can be sent back to Amazon to be reused for credit. This will allow Amazon to form a more environmentally friendly corporate image, while also saving on resources.

Small Businesses:

As the pandemic has caused a significant decline in small business revenue, we intend to mainly partner with small businesses in this project. The software will also help increase small business sales as by supporting the app, students will be more inclined to go to their store due to a positive public image, and the additive discounts will attract more customers. In the future, we wish to train AI to also detect trash of value (i.e.. Broken smartphones, precious metals), so that consumers can sell it in a bundle to local companies that can benefit from the material (ex: 3D-printing companies that convert used plastic to filament)

Timeline:

The following timeline will be used to ensure that our project will be on the market as soon as possible:

Code Refrences

https://medium.datadriveninvestor.com/deploy-your-pytorch-model-to-production-f69460192217

https://narainsreehith.medium.com/upload-image-video-to-flask-backend-from-react-native-app-expo-app-1aac5653d344

https://pytorch.org/tutorials/beginner/saving_loading_models.html

https://pytorch.org/tutorials/intermediate/flask_rest_api_tutorial.html

https://pytorch.org/get-started/locally/

https://www.kdnuggets.com/2019/03/deploy-pytorch-model-production.html

Refrences for Information

https://www.rubicon.com/blog/trash-reason-statistics-facts/

https://www.dosomething.org/us/facts/11-facts-about-recycling

https://www.forbes.com/sites/forbesagencycouncil/2016/10/31/why-brand-image-matters-more-than-you-think/?sh=6a4b462e10b8

https://www.channelreply.com/blog/view/ebay-amazon-packaging-costs

Owner
sabrina button
First Year Engineering Student at Queen's University (she/her)
sabrina button
Fine-tune GPT-3 with a Google Chat conversation history

Google Chat GPT-3 This repo will help you fine-tune GPT-3 with a Google Chat conversation history. The trained model will be able to converse as one o

Nate Baer 7 Dec 10, 2022
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Yu Zhang 50 Nov 08, 2022
Toward a Visual Concept Vocabulary for GAN Latent Space, ICCV 2021

Toward a Visual Concept Vocabulary for GAN Latent Space Code and data from the ICCV 2021 paper Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Kl

Sarah Schwettmann 13 Dec 23, 2022
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
Long text token classification using LongFormer

Long text token classification using LongFormer

abhishek thakur 161 Aug 07, 2022
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022
A library for end-to-end learning of embedding index and retrieval model

Poeem Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertis

54 Dec 21, 2022
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
Generate a cool README/About me page for your Github Profile

Github Profile README/ About Me Generator 💯 This webapp lets you build a cool README for your profile. A few inputs + ~15 mins = Your Github Profile

Rahul Banerjee 179 Jan 07, 2023
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084

Plan de Tecnologías del Lenguaje - Gobierno de España 203 Dec 20, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Dec 30, 2022