Stand-alone language identification system

Overview

langid.py readme

Introduction

langid.py is a standalone Language Identification (LangID) tool.

The design principles are as follows:

  1. Fast
  2. Pre-trained over a large number of languages (currently 97)
  3. Not sensitive to domain-specific features (e.g. HTML/XML markup)
  4. Single .py file with minimal dependencies
  5. Deployable as a web service

All that is required to run langid.py is >= Python 2.7 and numpy. The main script langid/langid.py is cross-compatible with both Python2 and Python3, but the accompanying training tools are still Python2-only.

langid.py is WSGI-compliant. langid.py will use fapws3 as a web server if available, and default to wsgiref.simple_server otherwise.

langid.py comes pre-trained on 97 languages (ISO 639-1 codes given):

af, am, an, ar, as, az, be, bg, bn, br, bs, ca, cs, cy, da, de, dz, el, en, eo, es, et, eu, fa, fi, fo, fr, ga, gl, gu, he, hi, hr, ht, hu, hy, id, is, it, ja, jv, ka, kk, km, kn, ko, ku, ky, la, lb, lo, lt, lv, mg, mk, ml, mn, mr, ms, mt, nb, ne, nl, nn, no, oc, or, pa, pl, ps, pt, qu, ro, ru, rw, se, si, sk, sl, sq, sr, sv, sw, ta, te, th, tl, tr, ug, uk, ur, vi, vo, wa, xh, zh, zu

The training data was drawn from 5 different sources:

  • JRC-Acquis
  • ClueWeb 09
  • Wikipedia
  • Reuters RCV2
  • Debian i18n

Usage

langid.py [options]
Options:
-h, --help show this help message and exit
-s, --serve launch web service
--host=HOST host/ip to bind to
--port=PORT port to listen on
-v increase verbosity (repeat for greater effect)
-m MODEL load model from file
-l LANGS, --langs=LANGS
  comma-separated set of target ISO639 language codes (e.g en,de)
-r, --remote auto-detect IP address for remote access
-b, --batch specify a list of files on the command line
--demo launch an in-browser demo application
-d, --dist show full distribution over languages
-u URL, --url=URL
  langid of URL
--line process pipes line-by-line rather than as a document
-n, --normalize
  normalize confidence scores to probability values

The simplest way to use langid.py is as a command-line tool, and you can invoke using python langid.py. If you installed langid.py as a Python module (e.g. via pip install langid), you can invoke langid instead of python langid.py -n (the two are equivalent). This will cause a prompt to display. Enter text to identify, and hit enter:

>>> This is a test
('en', -54.41310358047485)
>>> Questa e una prova
('it', -35.41771221160889)

langid.py can also detect when the input is redirected (only tested under Linux), and in this case will process until EOF rather than until newline like in interactive mode:

python langid.py < README.rst
('en', -22552.496054649353)

The value returned is the unnormalized probability estimate for the language. Calculating the exact probability estimate is disabled by default, but can be enabled through a flag:

python langid.py -n < README.rst
('en', 1.0)

More details are provided in this README in the section on Probability Normalization.

You can also use langid.py as a Python library:

# python
Python 2.7.2+ (default, Oct  4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import langid
>>> langid.classify("This is a test")
('en', -54.41310358047485)

Finally, langid.py can use Python's built-in wsgiref.simple_server (or fapws3 if available) to provide language identification as a web service. To do this, launch python langid.py -s, and access http://localhost:9008/detect . The web service supports GET, POST and PUT. If GET is performed with no data, a simple HTML forms interface is displayed.

The response is generated in JSON, here is an example:

{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

A utility such as curl can be used to access the web service:

# curl -d "q=This is a test" localhost:9008/detect
{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

You can also use HTTP PUT:

# curl -T readme.rst localhost:9008/detect
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                               Dload  Upload   Total   Spent    Left  Speed
100  2871  100   119  100  2752    117   2723  0:00:01  0:00:01 --:--:--  2727
{"responseData": {"confidence": -22552.496054649353, "language": "en"}, "responseDetails": null, "responseStatus": 200}

If no "q=XXX" key-value pair is present in the HTTP POST payload, langid.py will interpret the entire file as a single query. This allows for redirection via curl:

# echo "This is a test" | curl -d @- localhost:9008/detect
{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

langid.py will attempt to discover the host IP address automatically. Often, this is set to localhost(127.0.1.1), even though the machine has a different external IP address. langid.py can attempt to automatically discover the external IP address. To enable this functionality, start langid.py with the -r flag.

langid.py supports constraining of the output language set using the -l flag and a comma-separated list of ISO639-1 language codes (the -n flag enables probability normalization):

# python langid.py -n -l it,fr
>>> Io non parlo italiano
('it', 0.99999999988965627)
>>> Je ne parle pas français
('fr', 1.0)
>>> I don't speak english
('it', 0.92210605672341062)

When using langid.py as a library, the set_languages method can be used to constrain the language set:

python
Python 2.7.2+ (default, Oct  4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import langid
>>> langid.classify("I do not speak english")
('en', 0.57133487679900674)
>>> langid.set_languages(['de','fr','it'])
>>> langid.classify("I do not speak english")
('it', 0.99999835791478453)
>>> langid.set_languages(['en','it'])
>>> langid.classify("I do not speak english")
('en', 0.99176190378750373)

Batch Mode

langid.py supports batch mode processing, which can be invoked with the -b flag. In this mode, langid.py reads a list of paths to files to classify as arguments. If no arguments are supplied, langid.py reads the list of paths from stdin, this is useful for using langid.py with UNIX utilities such as find.

In batch mode, langid.py uses multiprocessing to invoke multiple instances of the classifier, utilizing all available CPUs to classify documents in parallel.

Probability Normalization

The probabilistic model implemented by langid.py involves the multiplication of a large number of probabilities. For computational reasons, the actual calculations are implemented in the log-probability space (a common numerical technique for dealing with vanishingly small probabilities). One side-effect of this is that it is not necessary to compute a full probability in order to determine the most probable language in a set of candidate languages. However, users sometimes find it helpful to have a "confidence" score for the probability prediction. Thus, langid.py implements a re-normalization that produces an output in the 0-1 range.

langid.py disables probability normalization by default. For command-line usages of langid.py, it can be enabled by passing the -n flag. For probability normalization in library use, the user must instantiate their own LanguageIdentifier. An example of such usage is as follows:

>> from langid.langid import LanguageIdentifier, model
>> identifier = LanguageIdentifier.from_modelstring(model, norm_probs=True)
>> identifier.classify("This is a test")
('en', 0.9999999909903544)

Training a model

We provide a full set of training tools to train a model for langid.py on user-supplied data. The system is parallelized to fully utilize modern multiprocessor machines, using a sharding technique similar to MapReduce to allow parallelization while running in constant memory.

The full training can be performed using the tool train.py. For research purposes, the process has been broken down into indiviual steps, and command-line drivers for each step are provided. This allows the user to inspect the intermediates produced, and also allows for some parameter tuning without repeating some of the more expensive steps in the computation. By far the most expensive step is the computation of information gain, which will make up more than 90% of the total computation time.

The tools are:

  1. index.py - index a corpus. Produce a list of file, corpus, language pairs.
  2. tokenize.py - take an index and tokenize the corresponding files
  3. DFfeatureselect.py - choose features by document frequency
  4. IGweight.py - compute the IG weights for language and for domain
  5. LDfeatureselect.py - take the IG weights and use them to select a feature set
  6. scanner.py - build a scanner on the basis of a feature set
  7. NBtrain.py - learn NB parameters using an indexed corpus and a scanner

The tools can be found in langid/train subfolder.

Each tool can be called with --help as the only parameter to provide an overview of the functionality.

To train a model, we require multiple corpora of monolingual documents. Each document should be a single file, and each file should be in a 2-deep folder hierarchy, with language nested within domain. For example, we may have a number of English files:

./corpus/domain1/en/File1.txt ./corpus/domainX/en/001-file.xml

To use default settings, very few parameters need to be provided. Given a corpus in the format described above at ./corpus, the following is an example set of invocations that would result in a model being trained, with a brief description of what each step does.

To build a list of training documents:

python index.py ./corpus

This will create a directory corpus.model, and produces a list of paths to documents in the corpus, with their associated language and domain.

We then tokenize the files using the default byte n-gram tokenizer:

python tokenize.py corpus.model

This runs each file through the tokenizer, tabulating the frequency of each token according to language and domain. This information is distributed into buckets according to a hash of the token, such that all the counts for any given token will be in the same bucket.

The next step is to identify the most frequent tokens by document frequency:

python DFfeatureselect.py corpus.model

This sums up the frequency counts per token in each bucket, and produces a list of the highest-df tokens for use in the IG calculation stage. Note that this implementation of DFfeatureselect assumes byte n-gram tokenization, and will thus select a fixed number of features per ngram order. If tokenization is replaced with a word-based tokenizer, this should be replaced accordingly.

We then compute the IG weights of each of the top features by DF. This is computed separately for domain and for language:

python IGweight.py -d corpus.model
python IGweight.py -lb corpus.model

Based on the IG weights, we compute the LD score for each token:

python LDfeatureselect.py corpus.model

This produces the final list of LD features to use for building the NB model.

We then assemble the scanner:

python scanner.py corpus.model

The scanner is a compiled DFA over the set of features that can be used to count the number of times each of the features occurs in a document in a single pass over the document. This DFA is built using Aho-Corasick string matching.

Finally, we learn the actual Naive Bayes parameters:

python NBtrain.py corpus.model

This performs a second pass over the entire corpus, tokenizing it with the scanner from the previous step, and computing the Naive Bayes parameters P(C) and p(t|C). It then compiles the parameters and the scanner into a model compatible with langid.py.

In this example, the final model will be at the following path:

./corpus.model/model

This model can then be used in langid.py by invoking it with the -m command-line option as follows:

python langid.py -m ./corpus.model/model

It is also possible to edit langid.py directly to embed the new model string.

Read more

langid.py is based on our published research. [1] describes the LD feature selection technique in detail, and [2] provides more detail about the module langid.py itself. [3] compares the speed of langid.py to Google's Chrome CLD2, as well as my own pure-C implementation and the authors' implementation on specialized hardware.

[1] Lui, Marco and Timothy Baldwin (2011) Cross-domain Feature Selection for Language Identification, In Proceedings of the Fifth International Joint Conference on Natural Language Processing (IJCNLP 2011), Chiang Mai, Thailand, pp. 553—561. Available from http://www.aclweb.org/anthology/I11-1062

[2] Lui, Marco and Timothy Baldwin (2012) langid.py: An Off-the-shelf Language Identification Tool, In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL 2012), Demo Session, Jeju, Republic of Korea. Available from www.aclweb.org/anthology/P12-3005

[3] Kenneth Heafield and Rohan Kshirsagar and Santiago Barona (2015) Language Identification and Modeling in Specialized Hardware, In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Available from http://aclweb.org/anthology/P15-2063

Contact

Marco Lui <[email protected]>

I appreciate any feedback, and I'm particularly interested in hearing about places where langid.py is being used. I would love to know more about situations where you have found that langid.py works well, and about any shortcomings you may have found.

Acknowledgements

Thanks to aitzol for help with packaging langid.py for PyPI. Thanks to pquentin for suggestions and improvements to packaging.

Related Implementations

Dawid Weiss has ported langid.py to Java, with a particular focus on speed and memory use. Available from https://github.com/carrotsearch/langid-java

I have written a Pure-C version of langid.py, which an external evaluation (see Read more) has found to be up to 20x as fast as the pure Python implementation here. Available from https://github.com/saffsd/langid.c

I have also written a JavaScript version of langid.py which runs entirely in the browser. Available from https://github.com/saffsd/langid.js

Changelog

v1.0:
  • Initial release
v1.1:
  • Reorganized internals to implement a LanguageIdentifier class
v1.1.2:
  • Added a 'langid' entry point
v1.1.3:
  • Made classify and rank return Python data types rather than numpy ones
v1.1.4:
  • Added set_languages to __init__.py, fixing #10 (and properly fixing #8)
v1.1.5:
  • remove dev tag
  • add PyPi classifiers, fixing #34 (thanks to pquentin)
v1.1.6:
  • make nb_numfeats an int, fixes #46, thanks to @remibolcom
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

EleutherAI 42 Dec 13, 2022
Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

ICTNLP 29 Oct 16, 2022
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
Toward a Visual Concept Vocabulary for GAN Latent Space, ICCV 2021

Toward a Visual Concept Vocabulary for GAN Latent Space Code and data from the ICCV 2021 paper Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Kl

Sarah Schwettmann 13 Dec 23, 2022
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime

Pramook Khungurn 901 Jan 06, 2023
Speech Recognition Database Management with python

Speech Recognition Database Management The main aim of this project is to recogn

Abhishek Kumar Jha 2 Feb 02, 2022
Ray-based parallel data preprocessing for NLP and ML.

Wrangl Ray-based parallel data preprocessing for NLP and ML. pip install wrangl # for latest pip install git+https://github.com/vzhong/wrangl See exa

Victor Zhong 33 Dec 27, 2022
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP prod

VinAI Research 109 Dec 02, 2022
Words_And_Phrases - Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours

Words_And_Phrases Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours Abbreviations Abbreviation

Subhadeep Mandal 1 Feb 01, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
End-to-end MLOps pipeline of a BERT model for emotion classification.

image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this

Dimitre Oliveira 4 Nov 06, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Fan 137 Oct 26, 2022
Pangu-Alpha for Transformers

Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and

One 5 Oct 01, 2022