Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

Overview

TripClick Baselines with Improved Training Data

Welcome 🙌 to the hub-repo of our paper:

Establishing Strong Baselines for TripClick Health Retrieval Sebastian Hofstätter, Sophia Althammer, Mete Sertkan and Allan Hanbury

https://arxiv.org/abs/2201.00365

tl;dr We create strong re-ranking and dense retrieval baselines (BERTCAT, BERTDOT, ColBERT, and TK) for TripClick (health ad-hoc retrieval). We improve the – originally too noisy – training data with a simple negative sampling policy. We achieve large gains over BM25 in the re-ranking and retrieval setting on TripClick, which were not achieved with the original baselines. We publish the improved training files for everyone to use.

If you have any questions, suggestions, or want to collaborate please don't hesitate to get in contact with us via Twitter or mail to [email protected]

Please cite our work as:

@misc{hofstaetter2022tripclick,
      title={Establishing Strong Baselines for TripClick Health Retrieval}, 
      author={Sebastian Hofst{\"a}tter and Sophia Althammer and Mete Sertkan and Allan Hanbury},
      year={2022},
      eprint={2201.00365},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}

Training Files

We publish the improved training files without the text content instead using the ids from TripClick (with permission from the TripClick owners); for the text content please get the full TripClick dataset from the TripClick Github page.

Our training files have the format query_id pos_passage_id neg_passage_id (with tab separation) and are available as a HuggingFace dataset: https://huggingface.co/datasets/sebastian-hofstaetter/tripclick-training

Source Code

The full source-code for our paper is here, as part of our matchmaker library: https://github.com/sebastian-hofstaetter/matchmaker

We provide getting started guides for training re-ranking and retrieval models, as well as a range of evaluation setups.

Pre-Trained Models

Unfortunately, the license of TripClick does not allow us to publish the trained models.

TripClick Baselines Results

For more information and commentary on the results, please see our ECIR paper.

BM25 Top200 Re-Ranking

Model BERT Instance HEAD TORSO TAIL
nDCG MRR nDCG MRR nDCG MRR
Original Baselines
BM25 -- .140 .276 .206 .283 .267 .258
ConvKNRM -- .198 .420 .243 .347 .271 .265
TK -- .208 .434 .272 .381 .295 .280
Our Improved Baselines
TK -- .232 .472 .300 .390 .345 .319
ColBERT SciBERT .270 .556 .326 .426 .374 .347
PubMedBERT-Abstract .278 .557 .340 .431 .387 .361
BERT_CAT DistilBERT .272 .556 .333 .427 .381 .355
BERT-Base .287 .579 .349 .453 .396 .366
SciBERT .294 .595 .360 .459 .408 .377
PubMedBERT-Full .298 .582 .365 .462 .412 .381
PubMedBERT-Abstract .296 .587 .359 .456 .409 .380
Ensemble (Last 3 BERT_CAT) .303 .601 .370 .472 .420 .392

Dense Retrieval Results

Model BERT Instance Head(DCTR)
[email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Original Baselines
BM25 -- 31% .140 .276 .499 .621 .834
Our Improved Baselines
BERT_DOT DistilBERT 39% .236 .512 .550 .648 .813
SciBERT 41% .243 .530 .562 .640 .793
PubMedBERT 40% .235 .509 .582 .673 .828
Owner
Sebastian Hofstätter
PhD student; working on machine learning and information retrieval
Sebastian Hofstätter
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022