Multi-Glimpse Network With Python

Related tags

Deep LearningMGNet
Overview

Multi-Glimpse Network

Our code requires Python ≥ 3.8

Installation

For example, venv + pip:

$ python3 -m venv env
$ source env/bin/activate
(env) $ python3 -m pip install -r requirements.txt

Evaluation

Accuracy on clean images

  1. Create ImageNet100 from ImageNet (using symbolic links).
$ python3 tools/create_imagenet100.py tools/imagenet100.txt \
    /path/to/ImageNet /path/to/ImageNet100
  1. Download checkpoints from Google Drive.

  2. Test accuracy.

$ export dataset="--train_dir /path/to/ImageNet100/train \
    --val_dir /path/to/ImageNet100/val \
    --dataset imagenet --num_class 100"
# Baseline
$ python3 main.py $dataset --test --n_iter 1 --scale 1.0  --model resnet18 \
    --checkpoint resnet18_baseline
# Ours
$ python3 main.py $dataset --test --n_iter 4 --scale 2.33 --model resnet18 \
    --checkpoint resnet18_ours --alpha 0.6 --s 0.02

Add the flag --flop_count to count the approximate FLOPs for the inference of an image. (using fvcore)

Accuracy on adversarial attacks (PGD)

  1. Test adversarial accuracy.
# Baseline
$ python3 main.py $dataset --test --n_iter 1 --scale 1.0  --adv --step_k 10 \
    --model resnet18 --checkpoint resnet18_baseline
# Ours
$ python3 main.py $dataset --test --n_iter 4 --scale 2.33 --adv --step_k 10 \
    --model resnet18 --checkpoint resnet18_ours --alpha 0.6 --s 0.02

Accuracy on common corruptions

  1. Create ImageNet100-C from ImageNet-C (using symbolic links).
$ python3 tools/create_imagenet100c.py  \
    tools/imagenet100.txt  /path/to/ImageNet-C/ /path/to/ImageNet100-C/
  1. Test for a single corruption.
$ export dataset="--train_dir /path/to/ImageNet100/train \
    --val_dir /path/to/ImageNet100-C/pixelate/5 \
    --dataset imagenet --num_class 100"
# Baseline
$ python3 main.py $dataset --test --n_iter 1 --scale 1.0  --model resnet18 \
    --checkpoint resnet18_baseline
# Ours
$ python3 main.py $dataset --test --n_iter 4 --scale 2.33 --model resnet18 \
    --checkpoint resnet18_ours --alpha 0.6 --s 0.02
  1. A simple script to test all corruptions and collect results.
# Modify tools/eval_imagenet100c.py and run it to generate script
$ python3 tools/eval_imagenet100c.py /home2/ImageNet100-C/ > run.sh
# Evaluate
$ bash run.sh
# Collect results
$ python3 tools/collect_imagenet100c.py

Training

$ export dataset="--train_dir /path/to/ImageNet100/train \
    --val_dir /path/to/ImageNet100/val \
    --dataset imagenet --num_class 100"
# Baseline
$ python3 main.py $dataset --epochs 400 --n_iter 1 --scale 1.0 \
    --model resnet18 --gpu 0,1,2,3
# Ours
$ python3 main.py $dataset --epochs 400 --n_iter 4 --scale 2.33 \
    --model resnet18 --alpha 0.6 --s 0.02  --gpu 0,1,2,3

Check tensorboard for the logs. (When training with multiple gpus, the log value may be scaled by the number of gpus except for the validation accuracy)

tensorboard  --logdir=logs

Note that we left our exploration in the code for further study, e.g., self-supervised spatial guidance, dynamic gradient re-scaling operation.

Owner
LInkedIn https://www.linkedin.com/in/sia-huat-tan-2bb6911a5/
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022