Explaining Hyperparameter Optimization via PDPs

Overview

Explaining Hyperparameter Optimization via PDPs

This repository gives access to an implementation of the methods presented in the paper submission “Explaining Hyperparameter Optimization via PDPs”, as well as all code that was used for the experimental analysis.

This repository is structured as follows:

    ├── analysis/               # Scripts used to create figures and tables in the paper
    ├── data/                   # Location where all experimental data is stored
    │   ├── raw/                # Raw datasets for the DNN surrogate benchmark
    │   ├── runs/               # Individual runs 
    ├── benchmarks/             # Code for experimental analysis (section 6)
    │   ├── synthetic           # Synthetic benchmark (section 6.1)
    │   ├── mlp                 # DNN surrogate benchmark (section 6.2)
    ├── renv/                   # renv configuration files to enable a reproducible setup 
    ├── R/                      # Implementation of methods 
    ├── LICENSE
    └── README.md               

Reproducible Setup

To allow for a proper, reproducible setup of the environment we use the package renv.

The project dependencies can be installed via

library("renv")
renv::restore()

Quick Start

# Loading all scripts we need
source("R/tree_splitting.R")
source("R/helper.R")
source("R/marginal_effect.R")
source("R/plot_functions.R")

First, assume we have a surrogate model that we want to analyze.

Here, for example, we tuned a support vector machine on the iris task, and extracted the surrogate model after the last iteration.

library(mlr)
library(mlrMBO)
library(e1071)
library(BBmisc)
library(data.table)

par.set = makeParamSet(
  makeNumericParam("cost", -10, 4, trafo = function(x) 2^x),
  makeNumericParam("gamma", -10, 4, trafo = function(x) 2^x)
)

ctrl = makeMBOControl()
ctrl = setMBOControlInfill(ctrl, crit = makeMBOInfillCritCB(cb.lambda = 1))
ctrl = setMBOControlTermination(ctrl, iters = 5)
tune.ctrl = makeTuneControlMBO(mbo.control = ctrl)
res = tuneParams(makeLearner("classif.svm"), iris.task, cv3, par.set = par.set, control = tune.ctrl,
  show.info = FALSE)
  
surrogate =  res$mbo.result$models[[1]]

print(surrogate)
FALSE Model for learner.id=regr.km; learner.class=regr.km
FALSE Trained on: task.id = data; obs = 13; features = 2
FALSE Hyperparameters: jitter=TRUE,covtype=matern3_2,optim.method=gen,nugget.estim=TRUE

We are computing the PDP estimate with confidence for hyperparameter cost. We use the marginal_effect_sd_over_mean function, which uses the iml packages.

##        cost      mean         sd
## 1 -9.998017 0.8085137 0.12850346
## 2 -9.261563 0.8223581 0.11260680
## 3 -8.525109 0.8271599 0.09651956
## 4 -7.788655 0.8161618 0.07913981
## 5 -7.052201 0.7814865 0.06697429
## 6 -6.315747 0.7200586 0.06511970

We visualize the outcome:

library(ggplot2)

p = plot_pdp_with_uncertainty_1D(me)
print(p)

To improve the uncertainty estimates, we partition the input space. We perform 2 splits and use the L2-objective.

predictor = Predictor$new(model = surrogate, data = data)
effects = FeatureEffect$new(predictor = predictor, feature = "cost", method = "pdp")

tree = compute_tree(effects, data, "SS_L2", 2)

We now want to visualize the PDP in the node with the best objective after 1 split.

plot_pdp_for_node(node = tree[[2]][[2]], testdata = data, model = surrogate, pdp.feature = "cost", grid.size = 20)

Reproduce Experiments

The steps necessary to reproduce the experiments are described here.

Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023