Author Disambiguation using Knowledge Graph Embeddings with Literals

Related tags

Deep Learningand-kge
Overview

Author Name Disambiguation with Knowledge Graph Embeddings using Literals

This is the repository for the master thesis project on Knowledge Graph Embeddings for Author Name Disambiguation presented by Cristian Santini at Digital Humanities and Digital Knowledge - University of Bologna, with the collaboration of Information Service Engineering - FIZ Karlsruhe, in a.y. 2020/2021.

Datasets

This repository contains notebooks and scripts used for a research on Author Name Disambiguation using Knowledge Graph Embeddings (KGEs) with literals. Due to the unavailability of an established benchmark for evaluating our approach, we extracted two Knowledge Graphs (KGs) from the following publicly available resources: 1) a triplestore available on Zenodo [1] covering information about the journal Scientometrics and modelled according to the OpenCitations Data Model and 2) a publicly available benchmark for author disambiguation available at this link by AMiner.
The Knowledge Graphs extracted are available on Zenodo as OpenCitations-782K [2] and AMiner-534K [3]. Each dataset is organized as a collection of RDF triples stored in TSV format. Literal triples are stored separately in order to train multimodal Knowledge Graph Embedding models.
Each dataset contains a JSON file called and_eval.json which contains a list of publications in the scholarly KGs labelled for evaluating AND algorithms. For the evaluation, while for AMiner-534K the set of publications was already manually annotated by a team of experts, for OC-782K we used the ORCID iDs associated with the authors in the triplestore in order to create an evaluation dataset.

PyKEEN extension

The pykeen-extension directory contains extension files compatible with PyKEEN (Release: v1.4.0.). In this directory we implemented some extensions of the LiteralE model [4] which allow to train multimodal knowledge graph embeddings by also using textual information contained in entity descriptions. Details about the models and on how to install the extension files are available in this README.md file.
The extended library provides an implementation of the following models:

  • DistMultText: an extension of the DistMult model [5] for training KGEs by using entity descriptions attached to entities.
  • ComplExText: an extension of the ComplEx model [6] which allows to train KGEs by using information coming from short text descriptions attached to entities.
  • DistMult_gate_text: an extension of the DistMult model which allows to train KGEs by using information coming from short text descriptions and numeric value associated with entities in KGs.
    Entity descriptions are encoded by using SPECTER [7], a BERT language model for scientific documents.

Code

Scripts used in our research are available in the src directory. The disambiguation.py file in the src/disambiguation folder contains the functions that we developed for carrying author name disambiguation by using knowledge graph embeddings. More specifically it contains:

  • the do_blocking() function, which is used to preliminarily group the authors in the KG into different sub-sets by means of their last name and first initial,
  • the cluster_KGEs() function, which takes as input the output of the do_blocking function and disambiguates the authors by means of Knowledge Graph Embeddings and Hierarchical Agglomerative Clustering.
  • the evaluation functions that we used in our experiments. The src folder also contains the various scripts used for extracting the scholarly KGs from the original sources and creating an evaluation dataset for AND.

Results

Knowledge Graph Embedding Evaluation

For evaluating the quality of our KGE models in representing the components of the studied KGs, OpenCitations-782K and AMiner-534K, we used entity prediction, one of the most common KG-completion tasks. In our experiments, we compared three architectures:

  • A DistMult model trained with only structural triples, i.e. triples connecting just two entities.
  • A DistMultText model which was trained by using titles of scholarly resources, i.e. journals and publications, along with structural triples.
  • A DistMult_gate_text model which was trained using titles and publication dates of scholarly resources in order to leverage the representations of the entities associated with them.
    Hyper-parameters were obtained by doing hyper-parameter optimization with PyKEEN. Details about the configuration files are available in the kge-evaluation folder.

The following table shows the results of our experiments for OC-782K.

Model MR MRR [email protected] [email protected] [email protected] [email protected]
DistMult 59901 0.3570 0.3157 0.3812 0.402 0.4267
DistMultText 60495 0.3568 0.3158 0.3809 0.4013 0.4252
DistMult_gate_text 61812 0.3534 0.3130 0.3767 0.3971 0.4218

The following table shows the results of our experiments for AMiner-534K.

Model MR MRR [email protected] [email protected] [email protected] [email protected]
DistMult 3585 0.3285 0.1938 0.3996 0.4911 0.5940
DistMultText 3474 0.3443 0.2139 0.4123 0.5014 0.6019
DistMult_gate_text 3560 0.3452 0.2163 0.4123 0.5009 0.6028

Author Name Disambiguation

We compared our architecture for Author Name Disambiguation (AND) for KGs with a simple Rule-based method inspired by Caron and Van Eck [8] on OC-782K and with other state-of-the-art graph embedding models on the AMiner benchmark (results taken from [9]). The results are reported below.

Model Precision Recall F1
Caron & Van Eck [8] 84.66 50.20 63.03
DistMult 91.71 67.11 77.50
DistMultText 89.63 66.98 76.67
DistMult_gate_text 82.76 67.59 74.40

Model Precision Recall F1
Zhang and Al Hasan [10] 70.63 59.53 62.81
Zhang et Al. [9] 77.96 63.03 67.79
DistMult 78.36 59.68 63.36
DistMultText 77.24 61.21 64.18
DistMult_gate_text 77.62 59.91 63.07

References

[1] Massari, Arcangelo. (2021). Bibliographic dataset based on Scientometrics, containing provenance information compliant with the OpenCitations Data Model and non disambigued authors (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5151264

[2] Santini, Cristian, Alam, Mehwish, Gesese, Genet Asefa, Peroni, Silvio, Gangemi, Aldo, & Sack, Harald. (2021). OC-782K: Knowledge Graph of "Scientometrics" modelled according to the OpenCitations Data Model [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5675787

[3] Santini, Cristian, Alam, Mehwish, Gesese. Genet Asefa, Peroni, Silvio, Gangemi, Aldo, & Sack, Harald. (2021). AMiner-534K: Knowledge Graph of AMiner benchmark for Author Name Disambiguation [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5675801

[4] Kristiadi A., Khan M.A., Lukovnikov D., Lehmann J., Fischer A. (2019) Incorporating Literals into Knowledge Graph Embeddings. In: Ghidini C. et al. (eds) The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science, vol 11778. Springer, Cham. https://doi.org/10.1007/978-3-030-30793-6_20.

[5] Yang, B., Yih, W., He, X., Gao, J., & Deng, L. (2015). Embedding Entities and Relations for Learning and Inference in Knowledge Bases. ArXiv:1412.6575 [Cs]. http://arxiv.org/abs/1412.6575

[6] Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., & Bouchard, G. (2016). Complex Embeddings for Simple Link Prediction. ArXiv:1606.06357 [Cs, Stat]. http://arxiv.org/abs/1606.06357

[7] Cohan, A., Feldman, S., Beltagy, I., Downey, D., & Weld, D. S. (2020). SPECTER: Document-level Representation Learning using Citation-informed Transformers. ArXiv:2004.07180 [Cs]. http://arxiv.org/abs/2004.07180

[8] Caron, E., & van Eck, N.-J. (2014). Large scale author name disambiguation using rule-based scoring and clustering: International conference on science and technology indicators. Proceedings of the Science and Technology Indicators Conference 2014, 79–86. http://sti2014.cwts.nl

[9] Zhang, Y., Zhang, F., Yao, P., & Tang, J. (2018). Name Disambiguation in AMiner: Clustering, Maintenance, and Human in the Loop. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1002–1011. https://doi.org/10.1145/3219819.3219859

[10] Zhang, B., & Al Hasan, M. (2017). Name Disambiguation in Anonymized Graphs using Network Embedding. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 1239–1248. https://doi.org/10.1145/3132847.3132873

Acknowledgments

The software and data here available are the result of a master thesis carried in collaboration between the FICLIT department of the University of Bologna and the research department FIZ - Information Service Engineering (ISE) of the Karlsruhe Institute of Technology (KIT). The thesis has been supervised by Prof. Aldo Gangemi and Prof. Silvio Peroni from the University of Bologna, and Prof. Harald Sack, Dr. Mehwish Alam and Genet Asefa Gesese from FIZ-ISE.

This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022