Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Overview

Few-shot Image Generation via Cross-domain Correspondence

Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zhang

Adobe Research, UC Davis, UC Berkeley

teaser

PyTorch implementation of adapting a source GAN (trained on a large dataset) to a target domain using very few images.

Project page | Paper

Overview

Our method helps adapt the source GAN where one-to-one correspondence is preserved between the source Gs(z) and target Gt(z) images.

Requirements

Note The base model is taken from StyleGAN2's implementation by @rosinality.

  • Linux
  • NVIDIA GPU + CUDA CuDNN 10.2
  • PyTorch 1.7.0
  • Python 3.6.9
  • Install all the other libraries through pip install -r requirements.txt

Testing

Currently, we are providing different sets of images, using which the quantitative results in Table 1 and 2 are presented.

Evaluating FID

There are three sets of images which are used to get the results in Table 1:

  • A set of real images from a target domain -- Rtest
  • 10 images from the above set (Rtest) used to train the algorithm -- Rtrain
  • 5000 generated images using the GAN-based method -- F

The following table provides a link to each of these images:

Rtrain Rtest F
Babies link link link
Sunglasses link link link
Sketches link link link

Rtrain is given just to illustate what the algorithm sees, and won't be used for computing the FID score.

Download, and unzip the set of images into your desired directory, and compute the FID score (taken from pytorch-fid) between the real (Rtest) and fake (F) images, by running the following command

python -m pytorch_fid /path/to/real/images /path/to/fake/images

Evaluating intra-cluster distance

Download the entire set of images from here (1.1 GB), which are used for the results in Table 2. The organization of this collection is as follows:

cluster_centers
└── amedeo			# target domain -- will be from [amedeo, sketches]
    └── ours			# method -- will be from [tgan, tgan_ada, freezeD, ewc, ours]
        └── c0			# center id -- there will be 10 clusters [c0, c1 ... c9]
            ├── center.png	# cluster center -- this is one of the 10 training images used. Each cluster will have its own center
            │── img0.png   	# generated images which matched with this cluster's center, according to LPIPS distance.
            │── img1.png
            │      .
	    │      .
                   

Unzip the file, and then run the following command to compute the results for a baseline on a dataset:

CUDA_VISIBLE_DEVICES=0 python3 feat_cluster.py --baseline <baseline> --dataset <target_domain> --mode intra_cluster_dist

CUDA_VISIBLE_DEVICES=0 python3 feat_cluster.py --baseline tgan --dataset sketches --mode intra_cluster_dist

We also provide the utility to visualize the closest and farthest members of a cluster, as shown in Figure 14 (shown below), using the following command:

CUDA_VISIBLE_DEVICES=0 python3 feat_cluster.py --baseline tgan --dataset sketches --mode visualize_members

The command will save the generated image which is closest/farthest to/from a center as closest.png/farthest.png respectively.

Note We cannot share the images for the caricature domain due to license issues.

More results coming soon..

Bibtex

@inproceedings{ojha2021few-shot-gan,
  title={Few-shot Image Generation via Cross-domain Correspondence},
  author={Ojha, Utkarsh and Li, Yijun and Lu, Cynthia and Efros, Alexei A. and Lee, Yong Jae and Shechtman, Eli and Zhang, Richard},
  booktitle={CVPR},
  year={2021}
}

Acknowledgment

As mentioned before, the StyleGAN2 model is borrowed from this wonderful pytorch implementation by @rosinality. We are also thankful to @mseitzer and @richzhang for their user friendly implementations of computing FID score and LPIPS metric.

Owner
Utkarsh Ojha
Doing things with pixels
Utkarsh Ojha
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir

Michael Janner 269 Jan 05, 2023
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023