Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Overview

Few-shot Image Generation via Cross-domain Correspondence

Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zhang

Adobe Research, UC Davis, UC Berkeley

teaser

PyTorch implementation of adapting a source GAN (trained on a large dataset) to a target domain using very few images.

Project page | Paper

Overview

Our method helps adapt the source GAN where one-to-one correspondence is preserved between the source Gs(z) and target Gt(z) images.

Requirements

Note The base model is taken from StyleGAN2's implementation by @rosinality.

  • Linux
  • NVIDIA GPU + CUDA CuDNN 10.2
  • PyTorch 1.7.0
  • Python 3.6.9
  • Install all the other libraries through pip install -r requirements.txt

Testing

Currently, we are providing different sets of images, using which the quantitative results in Table 1 and 2 are presented.

Evaluating FID

There are three sets of images which are used to get the results in Table 1:

  • A set of real images from a target domain -- Rtest
  • 10 images from the above set (Rtest) used to train the algorithm -- Rtrain
  • 5000 generated images using the GAN-based method -- F

The following table provides a link to each of these images:

Rtrain Rtest F
Babies link link link
Sunglasses link link link
Sketches link link link

Rtrain is given just to illustate what the algorithm sees, and won't be used for computing the FID score.

Download, and unzip the set of images into your desired directory, and compute the FID score (taken from pytorch-fid) between the real (Rtest) and fake (F) images, by running the following command

python -m pytorch_fid /path/to/real/images /path/to/fake/images

Evaluating intra-cluster distance

Download the entire set of images from here (1.1 GB), which are used for the results in Table 2. The organization of this collection is as follows:

cluster_centers
└── amedeo			# target domain -- will be from [amedeo, sketches]
    └── ours			# method -- will be from [tgan, tgan_ada, freezeD, ewc, ours]
        └── c0			# center id -- there will be 10 clusters [c0, c1 ... c9]
            ├── center.png	# cluster center -- this is one of the 10 training images used. Each cluster will have its own center
            │── img0.png   	# generated images which matched with this cluster's center, according to LPIPS distance.
            │── img1.png
            │      .
	    │      .
                   

Unzip the file, and then run the following command to compute the results for a baseline on a dataset:

CUDA_VISIBLE_DEVICES=0 python3 feat_cluster.py --baseline <baseline> --dataset <target_domain> --mode intra_cluster_dist

CUDA_VISIBLE_DEVICES=0 python3 feat_cluster.py --baseline tgan --dataset sketches --mode intra_cluster_dist

We also provide the utility to visualize the closest and farthest members of a cluster, as shown in Figure 14 (shown below), using the following command:

CUDA_VISIBLE_DEVICES=0 python3 feat_cluster.py --baseline tgan --dataset sketches --mode visualize_members

The command will save the generated image which is closest/farthest to/from a center as closest.png/farthest.png respectively.

Note We cannot share the images for the caricature domain due to license issues.

More results coming soon..

Bibtex

@inproceedings{ojha2021few-shot-gan,
  title={Few-shot Image Generation via Cross-domain Correspondence},
  author={Ojha, Utkarsh and Li, Yijun and Lu, Cynthia and Efros, Alexei A. and Lee, Yong Jae and Shechtman, Eli and Zhang, Richard},
  booktitle={CVPR},
  year={2021}
}

Acknowledgment

As mentioned before, the StyleGAN2 model is borrowed from this wonderful pytorch implementation by @rosinality. We are also thankful to @mseitzer and @richzhang for their user friendly implementations of computing FID score and LPIPS metric.

Owner
Utkarsh Ojha
Doing things with pixels
Utkarsh Ojha
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022