Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

Overview

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization

This is the official implementaion of paper TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization

This repository contains Pytorch training code, evaluation code, pretrained models and jupyter notebook for more visualization.

Illustration

Based on Deit, TS-CAM couples attention maps from visual image transformer with semantic-aware maps to obtain accurate localization maps (Token Semantic Coupled Attention Map, ts-cam).

ts-cam

Model Zoo

We provide pretrained TS-CAM models trained on CUB-200-2011 and ImageNet_ILSVRC2012 datasets.

Dataset [email protected] [email protected] Loc.Gt-Known [email protected] [email protected] Baidu Drive Google Drive
CUB-200-2011 71.3 83.8 87.7 80.3 94.8 model model
ILSVRC2012 53.4 64.3 67.6 74.3 92.1 model model

Note: the Extrate Code for Baidu Drive is as follows:

Usage

First clone the repository locally:

git clone https://github.com/vasgaowei/TS-CAM.git

Then install Pytorch 1.7.0+ and torchvision 0.8.1+ and pytorch-image-models 0.3.2:


conda create -n pytorch1.7 python=3.6
conda activate pytorc1.7
conda install anaconda
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=10.2 -c pytorch
pip install timm==0.3.2

Data preparation

CUB-200-2011 dataset

Please download and extrate CUB-200-2011 dataset.

The directory structure is the following:

TS-CAM/
  data/
    CUB-200-2011/
      attributes/
      images/
      parts/
      bounding_boxes.txt
      classes.txt
      image_class_labels.txt
      images.txt
      image_sizes.txt
      README
      train_test_split.txt

ImageNet1k

Download ILSVRC2012 dataset and extract train and val images.

The directory structure is organized as follows:

TS-CAM/
  data/
  ImageNet_ILSVRC2012/
    ILSVRC2012_list/
    train/
      n01440764/
        n01440764_18.JPEG
        ...
      n01514859/
        n01514859_1.JPEG
        ...
    val/
      n01440764/
        ILSVRC2012_val_00000293.JPEG
        ...
      n01531178/
        ILSVRC2012_val_00000570.JPEG
        ...
    ILSVRC2012_list/
      train.txt
      val_folder.txt
      val_folder_new.txt

And the training and validation data is expected to be in the train/ folder and val folder respectively:

For training:

On CUB-200-2011 dataset:

bash train_val_cub.sh {GPU_ID} ${NET}

On ImageNet1k dataset:

bash train_val_ilsvrc.sh {GPU_ID} ${NET}

Please note that pretrained model weights of Deit-tiny, Deit-small and Deit-base on ImageNet-1k model will be downloaded when you first train you model, so the Internet should be connected.

For evaluation:

On CUB-200-2011 dataset:

bash val_cub.sh {GPU_ID} ${NET} ${MODEL_PATH}

On ImageNet1k dataset:

bash val_ilsvrc.sh {GPU_ID} ${NET} ${MODEL_PATH}

GPU_ID should be specified and multiple GPUs can be used for accelerating training and evaluation.

NET shoule be chosen among tiny, small and base.

MODEL_PATH is the path of pretrained model.

Visualization

We provided jupyter notebook in tools_cam folder.

TS-CAM/
  tools-cam/
    visualization_attention_map_cub.ipynb
    visualization_attention_map_imaget.ipynb

Please download pretrained TS-CAM model weights and try more visualzation results((Attention maps using our method and Attention Rollout method)). You can try other interseting images you like to show the localization map(ts-cams).

Visualize localization results

We provide some visualization results as follows.

localization

Visualize attention maps

We can also visualize attention maps from different transformer layers.

attention maps_cub attention_map_ilsvrc

Contacts

If you have any question about our work or this repository, please don't hesitate to contact us by emails.

You can also open an issue under this project.

Citation

If you use this code for a paper please cite:

@article{Gao2021TSCAMTS,
  title={TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization},
  author={Wei Gao and Fang Wan and Xingjia Pan and Zhiliang Peng and Qi Tian and Zhenjun Han and Bolei Zhou and Qixiang Ye},
  journal={ArXiv},
  year={2021},
  volume={abs/2103.14862}
}
Owner
vasgaowei
vasgaowei
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023