AirCode: A Robust Object Encoding Method

Overview

AirCode

This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method"

Demo

Object matching comparison when the objects are non-rigid and the view is changed, left is the result of our method while right is the result of NetVLAD

Relocalization on KITTI datasets

Dependencies

  • Python
  • PyTorch
  • OpenCV
  • Matplotlib
  • NumPy
  • Yaml

Data

Four datasets are used in our experiments.

KITTI Odometry

For relocalization experiment. Three sequences are selected, and they are "00", "05" and "06".

KITTI Tracking

For multi-object matching experiment. Four sequences are selected, and they are "0002", "0003", "0006", "0010".

VOT Datasets

For single-object matching experiment. We select three sequences from VOT2019 datasets and they are "bluecar", "bus6" and "humans_corridor_occ_2_A", because the tracked objects in these sequences are included in coco datasets, which are the data we used to train mask-rcnn.

OTB Datasets

For single-object matching experiment. We select five sequences and they are "BlurBody", "BlurCar2", "Human2", "Human7" and "Liquor".

Examples

Relocalization on KITTI Datasets

  1. Extract object descrptors

    python experiments/place_recogination/online_relocalization.py -c config/experiment_tracking.yaml -g 1 -s PATH_TO_SAVE_MIDDLE_RESULTS -d PATH_TO_DATASET -m PATH_TO_MODELS
    
  2. Compute precision-recall curves

    python experiments/place_recogination/offline_process.py -c config/experiment_tracking.yaml -g 1 -d PATH_TO_DATASET -n PATH_TO_MIDDLE_RESULTS -s PATH_TO_SAVE_RESULTS
    
  3. Compute top-K relocalization results

    python experiments/place_recogination/offline_topK.py -c config/experiment_tracking.yaml -g 1 -d PATH_TO_DATASET -n PATH_TO_MIDDLE_RESULTS -s PATH_TO_SAVE_RESULTS
    

Object Matching on OTB, VOT or KITTI Tracking Datasets

  • Run multi-object matching experiment in KITTI Tracking Datasets Modify the config file and run

    python experiments/object_tracking/object_tracking.py -c config/experiment_tracking.yaml -g 1 -s PATH_TO_SAVE_RESULTS -d PATH_TO_DATASET -m PATH_TO_MODELS 
    
  • Run single-object matching experiment in OTB or VOT Datasets Modify the config file and run

    python experiments/object_tracking/single_object_tracking.py -c config/experiment_tracking.yaml -g 1 -s PATH_TO_SAVE_RESULTS -d PATH_TO_DATASET -m PATH_TO_MODELS 
    
You might also like...
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

 Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Code release for our paper,
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

Code and models for ICCV2021 paper
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Comments
  • how can I get *.pth files?

    how can I get *.pth files?

    Hello, I am a beginner. When I run python experiments/place_recogination/online_relocalization.py -c config/experiment_tracking.yaml -g 1 -s results/ -d /media/jixingwu/datasetj/KITTI/Odom/data_odometry_color/sequences -m models/, points_model.pth file is needed. So how can I get it? Thank you!

    opened by jixingwu 5
  • Unable to load model under CPU-only configuration

    Unable to load model under CPU-only configuration

    Hi, I want to run object tracking on KITTI tracking datasets with only CPU using the following terminal prompt:

      python experiments/object_tracking/object_tracking.py -c config/experiment_tracking.yaml -g 1 -s ./results -d /data/datasets/SLAM_dataset/training/ -m ./weights
    

    with configuration in object_tracking.py updated with

    configs['use_gpu'] = 0
    

    However, when running with the configuration above with gcn_model.pth, maskrcnn_model.pth, points_model.pth model files in release v2.0.0, the following error occurs:

    (aircode) [email protected]:~/workspace/AirCode$ python experiments/object_tracking/object_tracking.py -c config/experiment_tracking.yaml -g 1 -s ./results -d /data/datasets/SLAM_dataset/training/ -m ./weights
    experiments/object_tracking/object_tracking.py:371: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
      configs = yaml.load(configs)
    Traceback (most recent call last):
      File "experiments/object_tracking/object_tracking.py", line 384, in <module>
        main()
      File "experiments/object_tracking/object_tracking.py", line 381, in main
        show_object_tracking(configs)
      File "experiments/object_tracking/object_tracking.py", line 272, in show_object_tracking
        superpoint_model = build_superpoint_model(configs, requires_grad=False)
      File "./model/build_model.py", line 101, in build_superpoint_model
        model.load_state_dict(model_dict)
      File "/home/yutianc/minicondas/envs/aircode/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1052, in load_state_dict
        self.__class__.__name__, "\n\t".join(error_msgs)))
    RuntimeError: Error(s) in loading state_dict for VggLike:
            Unexpected key(s) in state_dict: "module.pretrained_net.features.0.weight", "module.pretrained_net.features.0.bias", "module.pretrained_net.features.2.weight", "module.pretrained_net.features.2.bias", "module.pretrained_net.features.5.weight", "module.pretrained_net.features.5.bias", "module.pretrained_net.features.7.weight", "module.pretrained_net.features.7.bias", "module.pretrained_net.features.10.weight", "module.pretrained_net.features.10.bias", "module.pretrained_net.features.12.weight", "module.pretrained_net.features.12.bias", "module.pretrained_net.features.14.weight", "module.pretrained_net.features.14.bias", "module.pretrained_net.features.17.weight", "module.pretrained_net.features.17.bias", "module.pretrained_net.features.19.weight", "module.pretrained_net.features.19.bias", "module.pretrained_net.features.21.weight", "module.pretrained_net.features.21.bias", "module.pretrained_net.features.24.weight", "module.pretrained_net.features.24.bias", "module.pretrained_net.features.26.weight", "module.pretrained_net.features.26.bias", "module.pretrained_net.features.28.weight", "module.pretrained_net.features.28.bias", "module.convPa.weight", "module.convPa.bias", "module.bnPa.weight", "module.bnPa.bias", "module.bnPa.running_mean", "module.bnPa.running_var", "module.bnPa.num_batches_tracked", "module.convPb.weight", "module.convPb.bias", "module.bnPb.weight", "module.bnPb.bias", "module.bnPb.running_mean", "module.bnPb.running_var", "module.bnPb.num_batches_tracked", "module.convDa.weight", "module.convDa.bias", "module.bnDa.weight", "module.bnDa.bias", "module.bnDa.running_mean", "module.bnDa.running_var", "module.bnDa.num_batches_tracked", "module.convDb.weight", "module.convDb.bias", "module.bnDb.weight", "module.bnDb.bias", "module.bnDb.running_mean", "module.bnDb.running_var", "module.bnDb.num_batches_tracked".
    

    Running object_tracking.py with CUDA seems to load models successfully. Is there something wrong with the model loading when GPU is disabled?

    opened by MarkChenYutian 4
  • Why RGB image is converted into grayscale image with 3 channels?

    Why RGB image is converted into grayscale image with 3 channels?

    Hi, I'm trying to use AirCode to do object matching on complete KITTI sequences and I'm reading the code in experiments/show_object_matching.py.

    While reading the code, I noticed that the current code is reading RGB image sequence, convert it into grayscale image, and then duplicate the image into 3-channel each with same value (as following):

    https://github.com/wang-chen/AirCode/blob/5e23e9f5322d2e4ee119d5326a6b6112cef0e6bd/experiments/show_object_matching/show_object_matching.py#L172-L176

    I'm a bit unsure about the reason why this operation is performed here as the original RGB image should contain more information about the object comparing to grayscale image. For instance, it should be easier to distinguish objects with different color but similar shape if the RGB value is preserved.

    opened by MarkChenYutian 2
Owner
Chen Wang
I am engaged in delivering simple and efficient source code.
Chen Wang
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022