KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

Overview

KAPAO (Keypoints and Poses as Objects)

KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as objects within a dense anchor-based detection framework. When not using test-time augmentation (TTA), KAPAO is much faster and more accurate than previous single-stage methods like DEKR and HigherHRNet:

alt text

This repository contains the official PyTorch implementation for the paper:
Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation.

Our code was forked from ultralytics/yolov5 at commit 5487451.

Setup

  1. If you haven't already, install Anaconda or Miniconda.
  2. Create a new conda environment with Python 3.6: $ conda create -n kapao python=3.6.
  3. Activate the environment: $ conda activate kapao
  4. Clone this repo: $ git clone https://github.com/wmcnally/kapao.git
  5. Install the dependencies: $ cd kapao && pip install -r requirements.txt
  6. Download the trained models: $ sh data/scripts/download_models.sh

Inference Demos

Note: FPS calculations includes all processing, including inference, plotting / tracking, image resizing, etc. See demo script arguments for inference options.

Flash Mob Demo

This demo runs inference on a 720p dance video (native frame-rate of 25 FPS).

alt text

To display the inference results in real-time:
$ python demos/flash_mob.py --weights kapao_s_coco.pt --display --fps

To create the GIF above:
$ python demos/flash_mob.py --weights kapao_s_coco.pt --start 188 --end 196 --gif --fps

Squash Demo

This demo runs inference on a 1080p slow motion squash video (native frame-rate of 25 FPS). It uses a simple player tracking algorithm based on the frame-to-frame pose differences.

alt text

To display the inference results in real-time:
$ python demos/squash.py --weights kapao_s_coco.pt --display --fps

To create the GIF above:
$ python demos/squash.py --weights kapao_s_coco.pt --start 42 --end 50 --gif --fps

COCO Experiments

Download the COCO dataset: $ sh data/scripts/get_coco_kp.sh

Validation (without TTA)

  • KAPAO-S (63.0 AP): $ python val.py --rect
  • KAPAO-M (68.5 AP): $ python val.py --rect --weights kapao_m_coco.pt
  • KAPAO-L (70.6 AP): $ python val.py --rect --weights kapao_l_coco.pt

Validation (with TTA)

  • KAPAO-S (64.3 AP): $ python val.py --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-M (69.6 AP): $ python val.py --weights kapao_m_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-L (71.6 AP): $ python val.py --weights kapao_l_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1

Testing

  • KAPAO-S (63.8 AP): $ python val.py --scales 0.8 1 1.2 --flips -1 3 -1 --task test
  • KAPAO-M (68.8 AP): $ python val.py --weights kapao_m_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1 --task test
  • KAPAO-L (70.3 AP): $ python val.py --weights kapao_l_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1 --task test

Training

The following commands were used to train the KAPAO models on 4 V100s with 32GB memory each.

KAPAO-S:

python -m torch.distributed.launch --nproc_per_node 4 train.py \
--img 1280 \
--batch 128 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5s6.pt \
--project runs/s_e500 \
--name train \
--workers 128

KAPAO-M:

python train.py \
--img 1280 \
--batch 72 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5m6.pt \
--project runs/m_e500 \
--name train \
--workers 128

KAPAO-L:

python train.py \
--img 1280 \
--batch 48 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5l6.pt \
--project runs/l_e500 \
--name train \
--workers 128

Note: DDP is usually recommended but we found training was less stable for KAPAO-M/L using DDP. We are investigating this issue.

CrowdPose Experiments

  • Install the CrowdPose API to your conda environment:
    $ cd .. && git clone https://github.com/Jeff-sjtu/CrowdPose.git
    $ cd CrowdPose/crowdpose-api/PythonAPI && sh install.sh && cd ../../../kapao
  • Download the CrowdPose dataset: $ sh data/scripts/get_crowdpose.sh

Testing

  • KAPAO-S (63.8 AP): $ python val.py --data crowdpose.yaml \
    --weights kapao_s_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-M (67.1 AP): $ python val.py --data crowdpose.yaml \
    --weights kapao_m_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-L (68.9 AP): $ python val.py --data crowdpose.yaml \
    --weights kapao_l_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1

Training

The following commands were used to train the KAPAO models on 4 V100s with 32GB memory each. Training was performed on the trainval split with no validation. The test results above were generated using the last model checkpoint.

KAPAO-S:

python -m torch.distributed.launch --nproc_per_node 4 train.py \
--img 1280 \
--batch 128 \
--epochs 300 \
--data data/crowdpose.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5s6.pt \
--project runs/cp_s_e300 \
--name train \
--workers 128 \
--noval

KAPAO-M:

python train.py \
--img 1280 \
--batch 72 \
--epochs 300 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5m6.pt \
--project runs/cp_m_e300 \
--name train \
--workers 128 \
--noval

KAPAO-L:

python train.py \
--img 1280 \
--batch 48 \
--epochs 300 \
--data data/crowdpose.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5l6.pt \
--project runs/cp_l_e300 \
--name train \
--workers 128 \
--noval

Acknowledgements

This work was supported in part by Compute Canada, the Canada Research Chairs Program, the Natural Sciences and Engineering Research Council of Canada, a Microsoft Azure Grant, and an NVIDIA Hardware Grant.

If you find this repo is helpful in your research, please cite our paper:

@article{mcnally2021kapao,
  title={Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation},
  author={McNally, William and Vats, Kanav and Wong, Alexander and McPhee, John},
  journal={arXiv preprint arXiv:2111.08557},
  year={2021}
}

Please also consider citing our previous works:

@inproceedings{mcnally2021deepdarts,
  title={DeepDarts: Modeling Keypoints as Objects for Automatic Scorekeeping in Darts using a Single Camera},
  author={McNally, William and Walters, Pascale and Vats, Kanav and Wong, Alexander and McPhee, John},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={4547--4556},
  year={2021}
}

@article{mcnally2021evopose2d,
  title={EvoPose2D: Pushing the Boundaries of 2D Human Pose Estimation Using Accelerated Neuroevolution With Weight Transfer},
  author={McNally, William and Vats, Kanav and Wong, Alexander and McPhee, John},
  journal={IEEE Access},
  volume={9},
  pages={139403--139414},
  year={2021},
  publisher={IEEE}
}
Owner
Will McNally
PhD Candidate
Will McNally
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

44 Dec 30, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022