Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Overview

Neural Fields in Visual Computing—Complementary Webpage

This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Citation

If you find our project helpful, please cite our review paper:

@article{xie2021neuralfield,
    title = {Neural Fields in Visual Computing and Beyond},
    author = {Yiheng Xie and Towaki Takikawa and Shunsuke Saito and Or Litany and Shiqin Yan and Numair Khan
    and Federico Tombari and James Tompkin and Vincent Sitzmann and Srinath Sridhar},
    booktitle = {ArXiv Pre-print},
    year = {2021} 
}

Adding a paper—How To

See our website instructions

Website Team—Get Started on Development

> pip install -r requirements.txt
> make run

When you are ready to deploy run make freeze to get a static version of the site in the build folder.

Deploying to Github

  • Define two command-line variables GH_TOKEN and GH_REF. GH_TOKEN is your Github personal access token, and will look like username:token. GH_REF is the location of this repo, e.g., $> export GH_REF=github.com/brownvc/neural-fields-review.
  • DO NOT add GH_TOKEN to the Makefile—this is your personal access token and should be kept private. Hence, declare a temporary command line variable using export.
  • Commit any changes. Any uncommited changes will be OVERWRITTEN!
  • Execute make deploy.
  • That's it. The page is now live here.

Tour

The repo contains:

  1. Datastore sitedata/

Collection of CSV files representing the papers, speakers, workshops, and other important information for the conference.

  1. Routing main.py

One file flask-server handles simple data preprocessing and site navigation.

  1. Templates templates/

Contains all the pages for the site. See base.html for the master page and components.html for core components.

  1. Frontend static/

Contains frontend components like the default css, images, and javascript libs.

  1. Scripts scripts/

Contains additional preprocessing to add visualizations, recommendations, schedules to the conference.

  1. For importing calendars as schedule see scripts/README_Schedule.md

Extensions

MiniConf is designed to be a completely static solution. However it is designed to integrate well with dynamic third-party solutions. We directly support the following providers:

  • Rocket.Chat: The chat/ directory contains descriptions for setting up a hosted Rocket.Chat instance and for embedding chat rooms on individual paper pages. You can either buy a hosted setting from Rocket.chat or we include instructions for running your own scalable instance through sloppy.io.

  • Auth0 : The code can integrate through Auth0.com to provide both page login (through javascript gating) and OAuth SSO with Rocket Chat. The documentation on Auth0 is very easy to follow, you simply need to create an Application for both the MiniConf site and the Rocket.Chat server. You then enter in the Client keys to the appropriate configs.

  • SlidesLive: It is easy to embedded any video provider -> YouTube, Vimeo, etc. However we have had great experience with SlidesLive and recommend them as a host. We include a slideslive example on the main page.

  • PDF.js: For conferences that use posters it is easy to include an embedded pdf on poster pages. An example is given.

Owner
Brown University Visual Computing Group
Brown University Visual Computing Group
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
CCPD: a diverse and well-annotated dataset for license plate detection and recognition

CCPD (Chinese City Parking Dataset, ECCV) UPdate on 10/03/2019. CCPD Dataset is now updated. We are confident that images in subsets of CCPD is much m

detectRecog 1.8k Dec 30, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023