A universal framework for learning timestamp-level representations of time series

Related tags

Deep Learningts2vec
Overview

TS2Vec

This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical Contrastive Loss.

Requirements

The recommended requirements for TS2Vec are specified as follows:

  • Python 3.8
  • scipy==1.6.1
  • torch==1.8.1
  • numpy==1.19.2
  • pandas==1.0.1
  • scikit_learn==0.24.1

The dependencies can be installed by:

pip install -r requirements.txt

Data

The datasets can be obtained and put into datasets/ folder in the following way:

  • 128 UCR datasets should be put into datasets/UCR/ so that each data file can be located by datasets/UCR/<dataset_name>/<dataset_name>_*.csv.
  • 30 UEA datasets should be put into datasets/UEA/ so that each data file can be located by datasets/UEA/<dataset_name>/<dataset_name>_*.arff.
  • 3 ETT datasets should be placed at datasets/ETTh1.csv, datasets/ETTh2.csv and datasets/ETTm1.csv.
  • Electricity dataset should be resampled into hourly data of 321 clients over the last 3 years and placed at datasets/electricity.csv.

Usage

To train and evaluate TS2Vec on a dataset, run the following command:

python train.py <dataset_name> <run_name> --archive <archive> --batch-size <batch_size> --repr-dims <repr_dims> --gpu <gpu> --eval

The detailed descriptions about the arguments are as following:

Parameter name Description of parameter
dataset_name The dataset name
run_name The folder name used to save model, output and evaluation metrics. This can be set to any word
archive The archive name that the dataset belongs to. This can be set to UCR, UEA, forecast_csv or forecast_csv_univar
batch_size The batch size (defaults to 8)
repr_dims The representation dimensions (defaults to 320)
gpu The gpu no. used for training and inference (defaults to 0)
eval Whether to perform evaluation after training

(For descriptions of more arguments, run python train.py -h.)

After training and evaluation, the trained encoder, output and evaluation metrics can be found in training/DatasetName__RunName_Date_Time/.

Scripts: The scripts for reproduction are provided in scripts/ folder.

Code Example

from ts2vec import TS2Vec
import datautils

# Load the ECG200 dataset from UCR archive
train_data, train_labels, test_data, test_labels = datautils.load_UCR('ECG200')
# (Both train_data and test_data have a shape of n_instances x n_timestamps x n_features)

# Train a TS2Vec model
model = TS2Vec(
    input_dims=1,
    device=0,
    output_dims=320
)
loss_log = model.fit(
    train_data,
    verbose=True
)

# Compute timestamp-level representations for test set
test_repr = model.encode(test_data)  # n_instances x n_timestamps x output_dims

# Compute instance-level representations for test set
test_repr = model.encode(test_data, encoding_window='full_series')  # n_instances x output_dims

# Sliding inference for test set
test_repr = model.encode(
    test_data,
    casual=True,
    sliding_length=1,
    sliding_padding=50
)  # n_instances x n_timestamps x output_dims
# (The timestamp t's representation vector is computed using the observations located in [t-50+1, t])
Owner
Zhihan Yue
Zhihan Yue
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023