Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

Overview

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs

Directory Structure

data/ --> data folder including splits we use for FEVER, zsRE, Wikidata5m, and LeapOfThought
training_reports/ --> folder to be populated with individual training run reports produced by main.py
result_sheets/ --> folder to be populated with .csv's of results from experiments produced by main.py
aggregated_results/ --> contains combined experiment results produced by run_jobs.py
outputs/ --> folder to be populated with analysis results, including belief graphs and bootstrap outputs
models/ --> contains model wrappers for Huggingface models and the learned optimizer code
data_utils/ --> contains scripts for making all datasets used in paper
main.py --> main script for all individual experiments in the paper
metrics.py --> functions for calculing metrics reported in the paper
utils.py --> data loading and miscellaneous utilities
run_jobs.py --> script for running groups of experiments
statistical_analysis.py --> script for running bootstraps with the experimental results
data_analysis.Rmd --> R markdown file that makes plots using .csv's in result_sheets
requirements.txt --> contains required packages

Requirements

The code is compatible with Python 3.6+. data_analysis.Rmd is an R markdown file that makes all the plots in the paper.

The required packages can be installed by running:

pip install -r requirements.txt

If you wish to visualize belief graphs, you should also install a few packages as so:

sudo apt install python-pydot python-pydot-ng graphviz

Making Data

We include the data splits from the paper in data/ (though the train split for Wikidata5m is divided into two files that need to be locally combined.) To construct the datasets from scratch, you can follow a few steps:

  1. Set the DATA_DIR environment variable to where you'd like the data to be stored. Set the CODE_DIR to point to the directory where this code is.
  2. Run the following blocks of code

Make FEVER and ZSRE

cd $DATA_DIR
git clone https://github.com/facebookresearch/KILT.git
cd KILT
mkdir data
python scripts/download_all_kilt_data.py
mv data/* ./
cd $CODE_DIR
python data_utils/shuffle_fever_splits.py
python data_utils/shuffle_zsre_splits.py

Make Leap-Of-Thought

cd $DATA_DIR
git clone https://github.com/alontalmor/LeapOfThought.git
cd LeapOfThought
python -m LeapOfThought.run -c Hypernyms --artiset_module soft_reasoning -o build_artificial_dataset -v training_mix -out taxonomic_reasonings.jsonl.gz
gunzip taxonomic_reasonings_training_mix_train.jsonl.gz taxonomic_reasonings_training_mix_dev.jsonl.gz taxonomic_reasonings_training_mix_test.jsonl.gz taxonomic_reasonings_training_mix_meta.jsonl.gz
cd $CODE_DIR
python data_utils/shuffle_leapofthought_splits.py

Make Wikidata5m

cd $DATA_DIR
mkdir Wikidata5m
cd Wikidata5m
wget https://www.dropbox.com/s/6sbhm0rwo4l73jq/wikidata5m_transductive.tar.gz
wget https://www.dropbox.com/s/lnbhc8yuhit4wm5/wikidata5m_alias.tar.gz
tar -xvzf wikidata5m_transductive.tar.gz
tar -xvzf wikidata5m_alias.tar.gz
cd $CODE_DIR
python data_utils/filter_wikidata.py

Experiment Replication

Experiment commands require a few arguments: --data_dir points to where the data is. --save_dir points to where models should be saved. --cache_dir points to where pretrained models will be stored. --gpu indicates the GPU device number. --seeds indicates how many seeds per condition to run. We give commands below for the experiments in the paper, saving everything in $DATA_DIR.

To train the task and prepare the necessary data for training learned optimizers, run:

python run_jobs.py -e task_model --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e write_LeapOfThought_preds --seeds 5 --dataset LeapOfThought --do_train false --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

To get the main experiments in a single-update setting, run:

python run_jobs.py -e learned_opt_main --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

For results in a sequential-update setting (with r=10) run:

python run_jobs.py -e learned_opt_r_main --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

To get the corresponding off-the-shelf optimizer baselines for these experiments, run

python run_jobs.py -e base_optimizers --seeds 5 --do_train false  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e base_optimizers_r_main --seeds 5 --do_train false  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

To get ablations across values of r for the learned optimizer and baselines, run

python run_jobs.py -e base_optimizers_r_ablation --seeds 1 --do_train false  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

Next we give commands for for ablations across k, the choice of training labels, the choice of evaluation labels, training objective terms, and a comparison to the objective from de Cao (in order):

python run_jobs.py -e learned_opt_k_ablation --seeds 1 --dataset ZSRE  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_label_ablation --seeds 1 --dataset ZSRE --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_eval_ablation --seeds 1 --dataset ZSRE  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_objective_ablation --seeds 1 --dataset all  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_de_cao --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

Analysis

Statistical Tests

After running an experiment from above, you can compute confidence intervals and hypothesis tests using statistical_analysis.py.

To get confidence intervals for the main single-update learned optimizer experiments, run

python statistical_analysis -e learned_opt_main -n 10000

To run hypothesis tests between statistics for the learned opt experiment and its baselines, run

python statistical_analysis -e learned_opt_main -n 10000 --hypothesis_tests true

You can substitute the experiment name for results for other conditions.

Belief Graphs

Add --save_dir, --cache_dir, and --data_dir arguments to the commands below per the instructions above.

Write preds from FEVER model:
python main.py --dataset FEVER --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --write_preds_to_file true

Write graph to file:
python main.py --dataset FEVER --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --optimizer adamw --lr 1e-6 --update_steps 100 --update_all_points true --write_graph_to_file true --use_dev_not_test false --num_random_other 10444

Analyze graph:
python main.py --dataset FEVER --probing_style model --probe linear --model roberta-base --seed 0 --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --use_dev_not_test false --optimizer adamw --lr 1e-6 --update_steps 100 --do_train false --do_eval false --pre_eval false --do_graph_analysis true

Combine LeapOfThought Main Inputs and Entailed Data:
python data_utils/combine_leapofthought_data.py

Write LeapOfThought preds to file:
python main.py --dataset LeapOfThought --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --write_preds_to_file true --leapofthought_main main

Write graph for LeapOfThought:
python main.py --dataset LeapOfThought --leapofthought_main main --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --optimizer sgd --update_steps 100 --lr 1e-2 --update_all_points true --write_graph_to_file true --use_dev_not_test false --num_random_other 8642

Analyze graph (add --num_eval_points 2000 to compute update-transitivity):
python main.py --dataset LeapOfThought --leapofthought_main main --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --optimizer sgd --update_steps 100 --lr 1e-2 --do_train false --do_eval false --pre_eval false --do_graph_analysis true

Plots

The data_analysis.Rmd R markdown file contains code for plots in the paper. It reads data from aggregated_results and saves plots in a ./figures directory.

Owner
Peter Hase
I am a PhD student in the UNC-NLP group at UNC Chapel Hill.
Peter Hase
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022