[email protected]) Boosting Co-teaching with Compression Regularization for Label Noise | PythonRepo" /> [email protected]) Boosting Co-teaching with Compression Regularization for Label Noise | PythonRepo">

([email protected]) Boosting Co-teaching with Compression Regularization for Label Noise

Overview

Nested-Co-teaching

([email protected]) Pytorch implementation of paper "Boosting Co-teaching with Compression Regularization for Label Noise"

[PDF]

If our project is helpful for your research, please consider citing :

@inproceedings{chen2021boosting, 
	  title={Boosting Co-teaching with Compression Regularization for Label Noise}, 
	  author={Chen, Yingyi and Shen, Xi and Hu, Shell Xu and Suykens, Johan AK}, 
	  booktitle={CVPR Learning from Limited and Imperfect Data (L2ID) workshop}, 
	  year={2021} 
	}

Our model can be learnt in a single GPU GeForce GTX 1080Ti (12G), this code has been tested with Pytorch 1.7.1

Table of Content

1. Toy Results

The nested regularization allows us to learn ordered representation which would be useful to combat noisy label. In this toy example, we aim at learning a projection from X to Y with noisy pairs. By adding nested regularization, the most informative recontruction is stored in the first few channels.

Baseline, same MLP Nested200, 1st channel
gif gif
Nested200,first 10 channels Nested200, first 100 channels
gif gif

2. Results on Clothing1M and Animal

Clothing1M [Xiao et al., 2015]

  • We provide average accuracy as well as the standard deviation for three runs (%) on the test set of Clothing1M [Xiao et al., 2015]. Results with “*“ are either using a balanced subset or a balanced loss.
Methods [email protected] result_ref/download
CE 67.2 [Wei et al., 2020]
F-correction [Patrini et al., 2017] 68.9 [Wei et al., 2020]
Decoupling [Malach and Shalev-Shwartz, 2017] 68.5 [Wei et al., 2020]
Co-teaching [Han et al., 2018] 69.2 [Wei et al., 2020]
Co-teaching+ [Yu et al., 2019] 59.3 [Wei et al., 2020]
JoCoR [Wei et al., 2020] 70.3 --
JO [Tanaka et al., 2018] 72.2 --
Dropout* [Srivastava et al., 2014] 72.8 --
PENCIL* [Yi and Wu, 2019] 73.5 --
MLNT [Li et al., 2019] 73.5 --
PLC* [Zhang et al., 2021] 74.0 --
DivideMix* [Li et al., 2020] 74.8 --
Nested* (Ours) 73.1 ± 0.3 model
Nested + Co-teaching* (Ours) 74.9 ± 0.2 model

ANIMAL-10N [Song et al., 2019]

  • We provide test set accuracy (%) on ANIMAL-10N [Song et al., 2019]. We report average accuracy as well as the standard deviation for three runs.
Methods [email protected] result_ref/download
CE 79.4 ± 0.1 [Song et al., 2019]
Dropout [Srivastava et al., 2014] 81.3 ± 0.3 --
SELFIE [Song et al., 2019] 81.8 ± 0.1 --
PLC [Zhang et al., 2021] 83.4 ± 0.4 --
Nested (Ours) 81.3 ± 0.6 model
Nested + Co-teaching (Ours) 84.1 ± 0.1 model

3. Datasets

Clothing1M

To download Clothing1M dataset [Xiao et al., 2015], please refer to here. Once it is downloaded, put it into ./data/. The structure of the file should be:

./data/Clothing1M
├── noisy_train
├── clean_val
└── clean_test

Generate two random Clothing1M noisy subsets for training after unzipping :

cd data/
# generate two random subsets for training
python3 clothing1M_rand_subset.py --name noisy_rand_subtrain1 --data-dir ./Clothing1M/ --seed 123

python3 clothing1M_rand_subset.py --name noisy_rand_subtrain2 --data-dir ./Clothing1M/ --seed 321

Please refer to data/gen_data.sh for more details.

ANIMAL-10N

To download ANIMAL-10N dataset [Song et al., 2019], please refer to here. It includes one training and one test set. Once it is downloaded, put it into ./data/. The structure of the file should be:

./data/Animal10N/
├── train
└── test

4. Train

4.1. Stage One : Training Nested Dropout Networks

We first train two Nested Dropout networks separately to provide reliable base networks for the subsequent stage. You can run the training of this stage by :

  • For training networks on Clothing1M (ResNet-18). You can also train baseline/dropout networks for comparisons. More details are provided in nested/run_clothing1m.sh.
cd nested/ 
# train one Nested network
python3 train_resnet.py --train-dir ../data/Clothing1M/noisy_rand_subtrain1/ --val-dir ../data/Clothing1M/clean_val/ --dataset Clothing1M --arch resnet18 --lrSchedule 5 --lr 0.02 --nbEpoch 30 --batchsize 448 --nested 100 --pretrained --freeze-bn --out-dir ./checkpoints/Cloth1M_nested100_lr2e-2_bs448_freezeBN_imgnet_model1 --gpu 0
  • For training networks on ANIMAL-10N (VGG-19+BN). You can also train baseline/dropout networks for comparisons. More details are provided in nested/run_animal10n.sh.
cd nested/ 
python3 train_vgg.py --train-dir ../data/Animal10N/train/ --val-dir ../data/Animal10N/test/ --dataset Animal10N --arch vgg19-bn --lr-gamma 0.2 --batchsize 128 --warmUpIter 6000 --nested1 100 --nested2 100 --alter-train --out-dir ./checkpoints_animal10n/Animal10N_alter_nested100_100_vgg19bn_lr0.1_warm6000_bs128_model1 --gpu 0

4.2. Stage Two : Fine-tuning with Co-teaching

In this stage, the two trained networks are further fine-tuned with Co-teaching. You can run the training of this stage by :

  • For fine-tuning with Co-teaching on Clothing1M (ResNet-18) :
cd co_teaching_resnet/ 
python3 main.py --train-dir ../data/Clothing1M/noisy_rand_subtrain1/ --val-dir ../data/Clothing1M/clean_val/ --dataset Clothing1M --lrSchedule 5 --nGradual 0 --lr 0.002 --nbEpoch 30 --warmUpIter 0 --batchsize 448 --freeze-bn --forgetRate 0.3 --out-dir ./finetune_ckpt/Cloth1M_nested100_lr2e-3_bs448_freezeBN_fgr0.3_pre_nested100_100 --resumePthList ../nested/checkpoints/Cloth1M_nested100_lr2e-2_bs448_imgnet_freezeBN_model1_Acc0.735_K12 ../nested/checkpoints/Cloth1M_nested100_lr2e-2_bs448_imgnet_freezeBN_model2_Acc0.733_K15 --nested 100 --gpu 0

The two Nested ResNet-18 networks trained in stage one can be downloaded here: ckpt1, ckpt2. We also provide commands for training Co-teaching from scratch for comparisons in co_teaching_resnet/run_clothing1m.sh.

  • For fine-tuning with Co-teaching on ANIMAL-10N (VGG-19+BN) :
cd co_teaching_vgg/ 
python3 main.py --train-dir ../data/Animal10N/train/ --val-dir ../data/Animal10N/test/ --dataset Animal10N --arch vgg19-bn --lrSchedule 5 --nGradual 0 --lr 0.004 --nbEpoch 30 --warmUpIter 0 --batchsize 128 --freeze-bn --forgetRate 0.2 --out-dir ./finetune_ckpt/Animal10N_alter_nested100_lr4e-3_bs128_freezeBN_fgr0.2_pre_nested100_100_nested100_100 --resumePthList ../nested/checkpoints_animal10n/new_code_nested/Animal10N_alter_nested100_100_vgg19bn_lr0.1_warm6000_bs128_model1_Acc0.803_K14 ../nested/checkpoints_animal10n/new_code_nested/Animal10N_alter_nested100_100_vgg19bn_lr0.1_warm6000_bs128_model2_Acc0.811_K14 --nested1 100 --nested2 100 --alter-train --gpu 0

The two Nested VGG-19+BN networks trained in stage one can be downloaded here: ckpt1, ckpt2. We also provide commands for training Co-teaching from scratch for comparisons in co_teaching_vgg/run_animal10n.sh.

5. Evaluation

To evaluate models' ability of combating with label noise, we compute classification accuracy on a provided clean test set.

5.1. Stage One : Nested Dropout Networks

Evaluation of networks derived from stage one are provided here :

cd nested/ 
# for networks on 
python3 test.py --test-dir ../data/Clothing1M/clean_test/ --dataset Clothing1M --arch resnet18 --resumePthList ./checkpoints/Cloth1M_nested100_lr2e-2_bs448_imgnet_freezeBN_model1_Acc0.735_K12 --KList 12 --gpu 0

More details can be found in nested/run_test.sh. Note that "_K12" in the model's name denotes the index of the optimal K, and the optimal number of channels for the model is actually 13 (nb of optimal channels = index of channel + 1).

5.2. Stage Two : Fine-tuning Co-teaching Networks

Evaluation of networks derived from stage two are provided as follows.

  • Networks trained on Clothing1M:
cd co_teaching_resnet/ 
python3 test.py --test-dir ../data/Clothing1M/clean_test/ --dataset Clothing1M --arch resnet18 --resumePthList ./finetune_ckpt/Cloth1M_nested100_lr2e-3_bs448_freezeBN_fgr0.3_pre_nested100_100_model2_Acc0.749_K24 --KList 24 --gpu 0

More details can be found in co_teaching_resnet/run_test.sh.

  • Networks trained on ANIMAL-10N:
cd co_teaching_vgg/ 
python3 test.py --test-dir ../data/Animal10N/test/ --dataset Animal10N --resumePthList ./finetune_ckpt/Animal10N_nested100_lr4e-3_bs128_freezeBN_fgr0.2_pre_nested100_100_nested100_100_model1_Acc0.842_K12 --KList 12 --gpu 0

More details can be found in co_teaching_vgg/run_test.sh.

Random maze generator and solver

Maze Generator and Solver I wrote a maze generator that works with two commonly known algorithms: Depth First Search and Randomized Prims. Both of the

Daniel Pérez 10 Sep 23, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval (arXiv) Repository to contain the code, models, data for end-to-end

225 Dec 25, 2022
Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Abdulazeez Jimoh 1 Jan 01, 2022
A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV.

DcoumentScanner A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV. Directly install the .exe file to inst

Harsh Vardhan Singh 1 Oct 29, 2021
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

This is the official implementation of "Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation". For more details, please

Pengyuan Lyu 309 Dec 06, 2022
pyntcloud is a Python library for working with 3D point clouds.

pyntcloud is a Python library for working with 3D point clouds.

David de la Iglesia Castro 1.2k Jan 07, 2023
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
Validate and transform various OCR file formats (hOCR, ALTO, PAGE, FineReader)

ocr-fileformat Validate and transform between OCR file formats (hOCR, ALTO, PAGE, FineReader) Installation Docker System-wide Usage CLI GUI API Transf

Universitätsbibliothek Mannheim 152 Dec 20, 2022
A Python script to capture images from multiple webcams at once and save them into your local machine

Capturing multiple images at once from Webcam Using OpenCV Capture multiple image by accessing the webcam of your system and save it to your machine.

Fazal ur Rehman 2 Apr 16, 2022
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
Multi-choice answer sheet correction system using computer vision with opencv & python.

Multi choice answer correction 🔴 5 answer sheet samples with a specific solution for detecting answers and sheet correction. 🔴 By running the soluti

Reza Firouzi 7 Mar 07, 2022
天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 - 第三名解决方案

天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 比赛链接 个人博客记录 目录结构 ├── final------------------------------------决赛方案PPT ├── preliminary_contest--------------------

19 Aug 17, 2022
This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

CVZone This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe librar

CVZone 648 Dec 30, 2022
An advanced 2D image manipulation with features such as edge detection and image segmentation built using OpenCV

OpenCV-ToothPaint3-Advanced-Digital-Image-Editor This application named ‘Tooth Paint’ version TP_2020.3 (64-bit) or version 3 was developed within a w

JunHong 1 Nov 05, 2021
This is a project to detect gestures to zoom in or out, using the real-time distance between the index finger and the thumb. It's based on OpenCV and Mediapipe.

Pinch-zoom This is a python project based on real-time hand-gesture detection, to zoom in or out, using the distance between the index finger and the

Harshit Bhalla 6 Jul 11, 2022
Deep LearningImage Captcha 2

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 117 Dec 28, 2022
Let's explore how we can extract text from forms

Form Segmentation Let's explore how we can extract text from any forms / scanned pages. Objectives The goal is to find an algorithm that can extract t

Philip Doxakis 42 Jun 05, 2022
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
OCR engine for all the languages

Description kraken is a turn-key OCR system optimized for historical and non-Latin script material. kraken's main features are: Fully trainable layout

431 Jan 04, 2023