NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

Overview

NAS-HPO-Bench-II API

Overview

NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

It helps

  • a fair and low-cost evaluation/comparison of joint optimization (NAS+HPO) methods
  • a detailed analysis of the relationship between architecture/training HPs and performances

Our experimental analysis supports the importance of joint optimization. Please see our paper for details.

This repo provides API for NAS-HPO-Bench-II to make benchmarking easy. You can query our data when evaluating models in the search process of AutoML methods instead of training the models at a high cost.

If you use the dataset, please cite:

@InProceedings{hirose2021bench,
  title={{NAS-HPO-Bench-II}: A Benchmark Dataset on Joint Optimization of Convolutional Neural Network Architecture and Training Hyperparameters},
  author={Hirose, Yoichi and Yoshinari, Nozomu and Shirakawa,  Shinichi},
  booktitle={Proceedings of the 13th Asian Conference on Machine Learning},
  year={2021}
}

The code for training models is here.

Dataset Overview

The total size of the search space is 192K. The dataset includes

  • the exact data of all the models in the search space for 12 epoch training
  • the surrogate data predicting accuracies after 200 epoch training

Architecture Search Space

The overall CNN architecture is constructed by stacking cells represented as a directed acyclic graph (DAG). Each edge in the graph indicates one of the four operations.

  • 3x3 convolution (ReLU activation, 3x3 convolution with stride 1, then batch normalization)
  • 3x3 average pooling with stride 1
  • Skip, which outputs the input tensor
  • Zero, which outputs the zero tensor with the same dimension as the input

It is based on NAS-Bench-201 and the only difference is that we exclude the 1x1 convolution operation from the options.

Training HP Search Space

The combination of eight initial learning rates and six batch sizes are used.

Hyperparameter Options
Batch Size 16, 32, 64, 128, 256, 512
Learning Rate 0.003125, 0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4

Installation

Run

pip install nashpobench2api

, and download the API dataset from Google Drive (93.7MB), then put the data in some directory (default: ./data). This API supports python >= 3.6 (and no external library dependencies).

If you want to run the codes in bench_algos, run pip install -r requirements.txt.

Getting Started

Create an API instance to get access to the dataset.

from nashpobench2api import NASHPOBench2API as API
api = API('/path/to/dataset')

You can get 12-epoch valid accuracy (%) and train+valid training cost (sec.) of the specified configuration.

acc, cost = api.query_by_key(
	cellcode='0|10|210',
	batch_size=256,
	lr=0.1 )

Here, cellcode represents one of the architectures in the search space. As shown in the figure below, the numbers in the cellcode mean the type of operations, and the position of the numbers shows the edge '(A) | (B)(C) | (D)(E)(F)'.

In the querying process, the api instance remembers and shows the log (what you have queried). You can reduce the log if set verbose=False when initializing api.

When the querying process has finished, you can get the test accuracy of the configuration with the best valid accuracy in the queried configurations.

results = api.get_results()

results is a dictionary with the keys below.

Key Explanation
acc_trans a transition of valid accuracies api have queried
key_trans a transition of keys (=cellcode, lr, batch_size) api have queried
best_acc_trans a transition of the best valid accuracies (%) api have queried
best_key_trans a transition of the best keys (=cellcode, lr, batch_size) api have queried
total_cost_trans a transition of train+valid costs (sec.)
final_accs 12-epoch and 200-epoch test accuracies (%) of the key with the best valid accuracy api have queried

You can reset what api have remebered, which is useful when multiple runs.

api.reset_log_data()

The examples of benchmarking codes are in the bench_algos directory. Especially, random_search.py is the simplest code and easy to understand (the core part is random_search()).

Work in Progress

  • Upload the dataset as DataFrame for visualization/analysis.
  • Upload codes for a surrogate model.
  • Upload the trained models.
Owner
yoichi hirose
yoichi hirose
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022