StarGAN - Official PyTorch Implementation (CVPR 2018)

Overview

StarGAN - Official PyTorch Implementation

***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 *****

This repository provides the official PyTorch implementation of the following paper:

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
Yunjey Choi1,2, Minje Choi1,2, Munyoung Kim2,3, Jung-Woo Ha2, Sung Kim2,4, Jaegul Choo1,2    
1Korea University, 2Clova AI Research, NAVER Corp.
3The College of New Jersey, 4Hong Kong University of Science and Technology
https://arxiv.org/abs/1711.09020

Abstract: Recent studies have shown remarkable success in image-to-image translation for two domains. However, existing approaches have limited scalability and robustness in handling more than two domains, since different models should be built independently for every pair of image domains. To address this limitation, we propose StarGAN, a novel and scalable approach that can perform image-to-image translations for multiple domains using only a single model. Such a unified model architecture of StarGAN allows simultaneous training of multiple datasets with different domains within a single network. This leads to StarGAN's superior quality of translated images compared to existing models as well as the novel capability of flexibly translating an input image to any desired target domain. We empirically demonstrate the effectiveness of our approach on a facial attribute transfer and a facial expression synthesis tasks.

Dependencies

Downloading datasets

To download the CelebA dataset:

git clone https://github.com/yunjey/StarGAN.git
cd StarGAN/
bash download.sh celeba

To download the RaFD dataset, you must request access to the dataset from the Radboud Faces Database website. Then, you need to create a folder structure as described here.

Training networks

To train StarGAN on CelebA, run the training script below. See here for a list of selectable attributes in the CelebA dataset. If you change the selected_attrs argument, you should also change the c_dim argument accordingly.

# Train StarGAN using the CelebA dataset
python main.py --mode train --dataset CelebA --image_size 128 --c_dim 5 \
               --sample_dir stargan_celeba/samples --log_dir stargan_celeba/logs \
               --model_save_dir stargan_celeba/models --result_dir stargan_celeba/results \
               --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

# Test StarGAN using the CelebA dataset
python main.py --mode test --dataset CelebA --image_size 128 --c_dim 5 \
               --sample_dir stargan_celeba/samples --log_dir stargan_celeba/logs \
               --model_save_dir stargan_celeba/models --result_dir stargan_celeba/results \
               --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

To train StarGAN on RaFD:

# Train StarGAN using the RaFD dataset
python main.py --mode train --dataset RaFD --image_size 128 \
               --c_dim 8 --rafd_image_dir data/RaFD/train \
               --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \
               --model_save_dir stargan_rafd/models --result_dir stargan_rafd/results

# Test StarGAN using the RaFD dataset
python main.py --mode test --dataset RaFD --image_size 128 \
               --c_dim 8 --rafd_image_dir data/RaFD/test \
               --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \
               --model_save_dir stargan_rafd/models --result_dir stargan_rafd/results

To train StarGAN on both CelebA and RafD:

# Train StarGAN using both CelebA and RaFD datasets
python main.py --mode=train --dataset Both --image_size 256 --c_dim 5 --c2_dim 8 \
               --sample_dir stargan_both/samples --log_dir stargan_both/logs \
               --model_save_dir stargan_both/models --result_dir stargan_both/results

# Test StarGAN using both CelebA and RaFD datasets
python main.py --mode test --dataset Both --image_size 256 --c_dim 5 --c2_dim 8 \
               --sample_dir stargan_both/samples --log_dir stargan_both/logs \
               --model_save_dir stargan_both/models --result_dir stargan_both/results

To train StarGAN on your own dataset, create a folder structure in the same format as RaFD and run the command:

# Train StarGAN on custom datasets
python main.py --mode train --dataset RaFD --rafd_crop_size CROP_SIZE --image_size IMG_SIZE \
               --c_dim LABEL_DIM --rafd_image_dir TRAIN_IMG_DIR \
               --sample_dir stargan_custom/samples --log_dir stargan_custom/logs \
               --model_save_dir stargan_custom/models --result_dir stargan_custom/results

# Test StarGAN on custom datasets
python main.py --mode test --dataset RaFD --rafd_crop_size CROP_SIZE --image_size IMG_SIZE \
               --c_dim LABEL_DIM --rafd_image_dir TEST_IMG_DIR \
               --sample_dir stargan_custom/samples --log_dir stargan_custom/logs \
               --model_save_dir stargan_custom/models --result_dir stargan_custom/results

Using pre-trained networks

To download a pre-trained model checkpoint, run the script below. The pre-trained model checkpoint will be downloaded and saved into ./stargan_celeba_128/models directory.

$ bash download.sh pretrained-celeba-128x128

To translate images using the pre-trained model, run the evaluation script below. The translated images will be saved into ./stargan_celeba_128/results directory.

$ python main.py --mode test --dataset CelebA --image_size 128 --c_dim 5 \
                 --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young \
                 --model_save_dir='stargan_celeba_128/models' \
                 --result_dir='stargan_celeba_128/results'

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{choi2018stargan,
author={Yunjey Choi and Minje Choi and Munyoung Kim and Jung-Woo Ha and Sunghun Kim and Jaegul Choo},
title={StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2018}
}

Acknowledgements

This work was mainly done while the first author did a research internship at Clova AI Research, NAVER. We thank all the researchers at NAVER, especially Donghyun Kwak, for insightful discussions.

Owner
Yunjey Choi
Yunjey Choi
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

757 Dec 30, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023