In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

Overview

cdf_att_classification

classes = {0: 'cat', 1: 'dog', 2: 'flower'}

In this project we use both Resnet and Self-attention layer for cdf-Classification. Specifically, For Resnet, we extract low level features from Convolutional Neural Network (CNN) trained on Dogcatflower_2 dataset(details show later).
We take inspiration from the Self-attention mechanism which is a prominent method in cv domain. We also use Grad-CAM algorithm to Visualize the gradient of the back propagation of the pretrain model to understand this network. The code is released for academic research use only. For commercial use, please contact [[email protected]].

Installation

Clone this repo.

git clone https://github.com/Alan-lab/cdf_classification
cd cdf_classification/

This code requires pytorch, python3.7, cv2, d2l. Please install it.

Dataset Preparation

For cdf_classification, the datasets must be downloaded beforehand. Please download them on the respective webpages. Please cite them if you use the data.

Preparing Cat and Dog Dataset. The dataset can be downloaded here.

Preparing flower Dataset. The dataset can be downloaded here.

You can also download Dogcatflower_2 dataset(made from above datasets) use the following link:

Link:https://pan.baidu.com/s/1ZcP_isbbRQBq9BHU6p_VtQ

key:oz7z

Training New Models

  1. Prepare your own dataset like this (https://github.com/Alan-lab/data/Dogcatflower_2).

  2. Training:

python main.py

model.pth will be extrated in the folder ./cdf_classification.

If av_test_acc < 0.75, model.pth will not save(d2l.train_ch6).

3.Predict

Prepare your valid dataset like this (https://github.com/Alan-lab/data/catsdogsflowers/valid1).

python Predict/predict.py

4.Class Activation Map The response size of the feature map is mapped to the original image, allowing readers to understand the effect of the model more intuitively. Prepare your picture like this (https://github.com/Alan-lab/data/Dogcatflower/test/flower/flower.1501.jpg).

python Viewer/Grad_CAM.py
  1. More details can be found in folder.

The Experimental Result

  1. Preformance
dataset Cat-acc Dog-acc flower-acc
Dogcatflower_2_train 96.2 88.7 93.6
Dogcatflower_2_test 72.7 69.2 89.7
catsdogsflowers_valid1 75.1 76.9 91.4
catsdogsflowers_valid2 75.5 73.5 92.9

2.Visualization

Postive sample fig1 fig2 fig3

Negative sample fig4

Multi-attention

show_attention

Acknowledgments

This work is mainly supported by (https://courses.d2l.ai/zh-v2/) and CSDN.

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Lailanqing ([email protected]).

[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022