Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Overview

PWC

Multi-label Classification with Partial Annotations using Class-aware Selective Loss


Paper | Pretrained models

Official PyTorch Implementation

Emanuel Ben-Baruch, Tal Ridnik, Itamar Friedman, Avi Ben-Cohen, Nadav Zamir, Asaf Noy, Lihi Zelnik-Manor
DAMO Academy, Alibaba Group

Abstract

Large-scale multi-label classification datasets are commonly, and perhaps inevitably, partially annotated. That is, only a small subset of labels are annotated per sample. Different methods for handling the missing labels induce different properties on the model and impact its accuracy. In this work, we analyze the partial labeling problem, then propose a solution based on two key ideas. First, un-annotated labels should be treated selectively according to two probability quantities: the class distribution in the overall dataset and the specific label likelihood for a given data sample. We propose to estimate the class distribution using a dedicated temporary model, and we show its improved efficiency over a naive estimation computed using the dataset's partial annotations. Second, during the training of the target model, we emphasize the contribution of annotated labels over originally un-annotated labels by using a dedicated asymmetric loss. Experiments conducted on three partially labeled datasets, OpenImages, LVIS, and simulated-COCO, demonstrate the effectiveness of our approach. Specifically, with our novel selective approach, we achieve state-of-the-art results on OpenImages dataset. Code will be made available.

Class-aware Selective Approach

An overview of our approach is summarized in the following figure:

Loss Implementation

Our loss consists of a selective approach for adjusting the training mode for each class individualy and a partial asymmetric loss.

An implementation of the Class-aware Selective Loss (CSL) can be found here.

  • class PartialSelectiveLoss(nn.Module)

Pretrained Models

We provide models pretrained on the OpenImages datasset with different modes and architectures:

Model Architecture Link mAP
Ignore TResNet-M link 85.38
Negative TResNet-M link 85.85
Selective (CSL) TResNet-M link 86.72
Selective (CSL) TResNet-L link 87.34

Inference Code (Demo)

We provide inference code, that demonstrate how to load the model, pre-process an image and do inference. Example run of OpenImages model (after downloading the relevant model):

python infer.py  \
--dataset_type=OpenImages \
--model_name=tresnet_m \
--model_path=./models_local/mtresnet_opim_86.72.pth \
--pic_path=./pics/10162266293_c7634cbda9_o.jpg \
--input_size=448

Result Examples

Training Code

Training code is provided in (train.py). Also, code for simulating partial annotation for the MS-COCO dataset is available (here). In particular, two "partial" simulation schemes are implemented: fix-per-class(FPC) and random-per-sample (RPS).

  • FPC: For each class, we randomly sample a fixed number of positive annotations and the same number of negative annotations. The rest of the annotations are dropped.
  • RPA: We omit each annotation with probability p.

Pretrained weights using the ImageNet-21k dataset can be found here: link
Pretrained weights using the ImageNet-1k dataset can be found here: link

Example of training with RPS simulation:

--data=/mnt/datasets/COCO/COCO_2014
--model-path=models/pretrain/mtresnet_21k
--gamma_pos=0
--gamma_neg=4
--gamma_unann=4
--simulate_partial_type=rps
--simulate_partial_param=0.5
--partial_loss_mode=selective
--likelihood_topk=5
--prior_threshold=0.5
--prior_path=./outputs/priors/prior_fpc_1000.csv

Example of training with FPC simulation:

--data=/mnt/datasets/COCO/COCO_2014
--model-path=models/pretrain/mtresnet_21k
--gamma_pos=0
--gamma_neg=4
--gamma_unann=4
--simulate_partial_type=fpc
--simulate_partial_param=1000
--partial_loss_mode=selective
--likelihood_topk=5
--prior_threshold=0.5
--prior_path=./outputs/priors/prior_fpc_1000.csv

Typical Training Results

FPC (1,000) simulation scheme:

Model mAP
Ignore, CE 76.46
Negative, CE 81.24
Negative, ASL (4,1) 81.64
CSL - Selective, P-ASL(4,3,1) 83.44

RPS (0.5) simulation scheme:

Model mAP
Ignore, CE 84.90
Negative, CE 81.21
Negative, ASL (4,1) 81.91
CSL- Selective, P-ASL(4,1,1) 85.21

Estimating the Class Distribution

The training code contains also the procedure for estimting the class distribution from the data. Our approach enables to rank the classes based on training a temporary model usinig the Ignore mode. link

Top 10 classes:

Method Top 10 ranked classes
Original 'person', 'chair', 'car', 'dining table', 'cup', 'bottle', 'bowl', 'handbag', 'truck', 'backpack'
Estiimate (Ignore mode) 'person', 'chair', 'handbag', 'cup', 'bench', 'bottle', 'backpack', 'car', 'cell phone', 'potted plant'
Estimate (Negative mode) 'kite' 'truck' 'carrot' 'baseball glove' 'tennis racket' 'remote' 'cat' 'tie' 'horse' 'boat'

Citation

@misc{benbaruch2021multilabel,
      title={Multi-label Classification with Partial Annotations using Class-aware Selective Loss}, 
      author={Emanuel Ben-Baruch and Tal Ridnik and Itamar Friedman and Avi Ben-Cohen and Nadav Zamir and Asaf Noy and Lihi Zelnik-Manor},
      year={2021},
      eprint={2110.10955},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

Several images from OpenImages dataset are used in this project. ֿ
Some components of this code implementation are adapted from the repository https://github.com/Alibaba-MIIL/ASL.

Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
CCPD: a diverse and well-annotated dataset for license plate detection and recognition

CCPD (Chinese City Parking Dataset, ECCV) UPdate on 10/03/2019. CCPD Dataset is now updated. We are confident that images in subsets of CCPD is much m

detectRecog 1.8k Dec 30, 2022