A python package to avoid writing and maintaining duplicated python docstrings.

Overview

PyPI - Python Version PyPI Code Style Codecov branch

docstring-inheritance is a python package to avoid writing and maintaining duplicated python docstrings. The typical usage is to enable the inheritance of the docstrings from a base class such that its derived classes fully or partly inherit the docstrings.

Features

  • Handle numpy and google docstring formats (i.e. sections based docstrings):
  • Handle docstrings for functions, classes, methods, class methods, static methods, properties.
  • Handle docstrings for classes with multiple or multi-level inheritance.
  • Docstring sections are inherited individually, like methods for a classes.
  • For docstring sections documenting signatures, the signature arguments are inherited individually.
  • Minimum performance cost: the inheritance is performed at import time, not for each call.
  • Compatible with rendering the documentation with Sphinx.

Licenses

The source code is distributed under the MIT license. The documentation is distributed under the CC BY-SA 4.0 license. The dependencies, with their licenses, are given in the CREDITS.rst file.

Installation

Install via pip:

pip install docstring-inheritance

Basic Usage

Inheriting docstrings for classes

docstring-inheritance provides metaclasses to enable the docstrings of a class to be inherited from its base classes. This feature is automatically transmitted to its derived classes as well. The docstring inheritance is performed for the docstrings of the:

  • class
  • methods
  • classmethods
  • staticmethods
  • properties

Use the NumpyDocstringInheritanceMeta metaclass to inherit docstrings in numpy format.

Use the GoogleDocstringInheritanceMeta metaclass to inherit docstrings in google format.

from docstring_inheritance import NumpyDocstringInheritorMeta


class Parent(metaclass=NumpyDocstringInheritorMeta):
    def meth(self, x, y=None):
        """Parent summary.

        Parameters
        ----------
        x:
           Description for x.
        y:
           Description for y.

        Notes
        -----
        Parent notes.
        """


class Child(Parent):
    def meth(self, x, z):
        """
        Parameters
        ----------
        z:
           Description for z.

        Returns
        -------
        Something.

        Notes
        -----
        Child notes.
        """


# The inherited docstring is
Child.meth.__doc__ = """Parent summary.

Parameters
----------
x:
   Description for x.
z:
   Description for z.

Returns
-------
Something.

Notes
-----
Child notes.
"""

Inheriting docstrings for functions

docstring-inheritance provides functions to inherit the docstring of a callable from a string. This is typically used to inherit the docstring of a function from another function.

Use the inherit_google_docstring function to inherit docstrings in google format.

Use the inherit_numpy_docstring function to inherit docstrings in numpy format.

from docstring_inheritance import inherit_google_docstring


def parent():
    """Parent summary.

    Args:
        x: Description for x.
        y: Description for y.

    Notes:
        Parent notes.
    """


def child():
    """
    Args:
        z: Description for z.

    Returns:
        Something.

    Notes:
        Child notes.
    """
    

inherit_google_docstring(parent.__doc__, child)


# The inherited docstring is
child.__doc__ = """Parent summary.

Args:
    x: Description for x.
    z: Description for z.

Returns:
    Something.

Notes:
    Child notes.
"""

Docstring inheritance specification

Sections order

The sections of an inherited docstring are sorted according to order defined in the NumPy docstring format specification:

  • Summary
  • Extended summary
  • Parameters for the NumPy format or Args for the Google format
  • Returns
  • Yields
  • Receives
  • Other Parameters
  • Attributes
  • Methods
  • Raises
  • Warns
  • Warnings
  • See Also
  • Notes
  • References
  • Examples
  • sections with other names come next

This ordering is also used for the docstring written with the Google docstring format specification even though it does not define all of these sections.

Sections with items

Those sections are:

  • Other Parameters
  • Methods
  • Attributes

The inheritance is done at the key level, i.e. a section of the inheritor will not fully override the parent one:

  • the keys in the parent section and not in the child section are inherited,
  • the keys in the child section and not in the parent section are kept,
  • for keys that are both in the parent and child section, the child ones are kept.

This allows to only document the new keys in such a section of an inheritor. For instance:

from docstring_inheritance import NumpyDocstringInheritorMeta


class Parent(metaclass=NumpyDocstringInheritorMeta):
    """
    Attributes
    ----------
    x:
       Description for x
    y:
       Description for y
    """


class Child(Parent):
    """
    Attributes
    ----------
    y:
       Overridden description for y
    z:
       Description for z
    """

    
# The inherited docstring is
Child.__doc__ = """
Attributes
----------
x:
   Description for x
y:
   Overridden description for y
z:
   Description for z
"""

Here the keys are the attribute names. The description for the key y has been overridden and the description for the key z has been added. The only remaining description from the parent is for the key x.

Sections documenting signatures

Those sections are:

  • Parameters (numpy format only)
  • Args (google format only)

In addition to the inheritance behavior described above:

  • the arguments not existing in the inheritor signature are removed,
  • the arguments are sorted according the inheritor signature,
  • the arguments with no descriptions are provided with a dummy description.
from docstring_inheritance import GoogleDocstringInheritorMeta


class Parent(metaclass=GoogleDocstringInheritorMeta):
    def meth(self, w, x, y):
        """
        Args:
            w: Description for w
            x: Description for x
            y: Description for y
        """


class Child(Parent):
    def meth(self, w, y, z):
        """
        Args:
            z: Description for z
            y: Overridden description for y
        """


# The inherited docstring is
Child.meth.__doc__ = """
Args:
    w: Description for w
    y: Overridden description for y
    z: Description for z
"""

Here the keys are the arguments names. The description for the key y has been overridden and the description for the key z has been added. The only remaining description from the parent is for the key w.

Advanced usage

Abstract base class

To create a parent class that both is abstract and has docstring inheritance, an additional metaclass is required:

import abc
from docstring_inheritance import NumpyDocstringInheritorMeta


class Meta(abc.ABCMeta, NumpyDocstringInheritorMeta):
    pass


class Parent(metaclass=Meta):
    pass

Similar projects

custom_inherit: docstring-inherit started as fork of this project, we would like to thank its author.

Python Advanced --- numpy, decorators, networking

Python Advanced --- numpy, decorators, networking (and more?) Hello everyone 👋 This is the project repo for the "Python Advanced - ..." introductory

Andreas Poehlmann 2 Nov 05, 2021
Docov - Light-weight, recursive docstring coverage analysis for python modules

docov Light-weight, recursive docstring coverage analysis for python modules. Ov

Richard D. Paul 3 Feb 04, 2022
Your Project with Great Documentation.

Read Latest Documentation - Browse GitHub Code Repository The only thing worse than documentation never written, is documentation written but never di

Timothy Edmund Crosley 809 Dec 28, 2022
Fast, efficient Blowfish cipher implementation in pure Python (3.4+).

blowfish This module implements the Blowfish cipher using only Python (3.4+). Blowfish is a block cipher that can be used for symmetric-key encryption

Jashandeep Sohi 41 Dec 31, 2022
Always know what to expect from your data.

Great Expectations Always know what to expect from your data. Introduction Great Expectations helps data teams eliminate pipeline debt, through data t

Great Expectations 7.8k Jan 05, 2023
Preview title and other information about links sent to chats.

Link Preview A small plugin for Nicotine+ to display preview information like title and description about links sent in chats. Plugin created with Nic

Nick 0 Sep 05, 2021
Automatic links from code examples to reference documentation

sphinx-codeautolink Automatic links from Python code examples to reference documentation at the flick of a switch! sphinx-codeautolink analyses the co

Felix Hildén 41 Dec 17, 2022
The OpenAPI Specification Repository

The OpenAPI Specification The OpenAPI Specification is a community-driven open specification within the OpenAPI Initiative, a Linux Foundation Collabo

OpenAPI Initiative 25.5k Dec 29, 2022
Automatically open a pull request for repositories that have no CONTRIBUTING.md file

automatic-contrib-prs Automatically open a pull request for repositories that have no CONTRIBUTING.md file for a targeted set of repositories. What th

GitHub 8 Oct 20, 2022
Some of the best ways and practices of doing code in Python!

Pythonicness ❤ This repository contains some of the best ways and practices of doing code in Python! Features Properly formatted codes (PEP 8) for bet

Samyak Jain 2 Jan 15, 2022
Python code for working with NFL play by play data.

nfl_data_py nfl_data_py is a Python library for interacting with NFL data sourced from nflfastR, nfldata, dynastyprocess, and Draft Scout. Includes im

82 Jan 05, 2023
Types that make coding in Python quick and safe.

Type[T] Types that make coding in Python quick and safe. Type[T] works best with Python 3.6 or later. Prior to 3.6, object types must use comment type

Contains 17 Aug 01, 2022
Python Eacc is a minimalist but flexible Lexer/Parser tool in Python.

Python Eacc is a parsing tool it implements a flexible lexer and a straightforward approach to analyze documents.

Iury de oliveira gomes figueiredo 60 Nov 16, 2022
A course-planning, course-map rendering and GPA-calculation web service, designed for the SFU (Simon Fraser University) student.

SFU Course Planner What is the overall goal of the project (i.e. what does it do, or what problem is it solving)? As the title suggests, this project

Ash Peng 1 Oct 21, 2021
My Sublime Text theme

rsms sublime text theme Install: cd path/to/your/sublime/packages git clone https://github.com/rsms/sublime-theme.git rsms-theme You'll also need the

Rasmus 166 Jan 04, 2023
NetBox plugin for BGP related objects documentation

Netbox BGP Plugin Netbox plugin for BGP related objects documentation. Compatibility This plugin in compatible with NetBox 2.10 and later. Installatio

Nikolay Yuzefovich 133 Dec 27, 2022
💯 Coolest snippets

nvim-snippets This was originally included in my personal Neovim setup, but I didn't like having all the snippets there so I decided to have them sepa

Eliaz Bobadilla 6 Aug 31, 2022
The tutorial is a collection of many other resources and my own notes

Why we need CTC? --- looking back on history 1.1. About CRNN 1.2. from Cross Entropy Loss to CTC Loss Details about CTC 2.1. intuition: forward algor

手写AI 7 Sep 19, 2022
Repository for tutorials, examples and starter scripts for using the MTU HPC cluster

MTU-HPC-Starter Repository for tutorials, examples and starter scripts for using the MTU HPC cluster Connecting to the MTU HPC cluster Within the coll

1 Jan 31, 2022
Some custom tweaks to the results produced by pytkdocs.

pytkdocs_tweaks Some custom tweaks for pytkdocs. For use as part of the documentation-generation-for-Python stack that comprises mkdocs, mkdocs-materi

Patrick Kidger 4 Nov 24, 2022