BRepNet: A topological message passing system for solid models

Overview

BRepNet: A topological message passing system for solid models

This repository contains the an implementation of BRepNet: A topological message passing system for solid models.

BRepNet kernel image

About BRepNet

BRepNet is a neural network specifically designed to operate on solid models. It uses additional topological information present in the boundary representation (B-Rep) data structure to perform convolutions in a way which is not possible for arbitrary graphs. As B-Reps describe manifolds, they contain additional topological information which includes the ordering of edges around faces as well as the face adjacency. The topology is defined using oriented edges called coedges. Each coedge maintains an adjacency relationship with the next and previous coedge around its parent face, the mating coedge on the adjacent face, the parent face and the parent edge.

B-Rep topology and topological walks

Using this information, we can identify faces, edges and coedges in the neighborhood of some starting coedge (red), using topological walks. A topological walk is a series of instructions we move us from the starting coedge to a nearby entity. In the figure above (B) the we show a walk from the red starting coedge to its mating coedge, to the next coedge in the loop, to mating coedge and finally to the parent face. Using multiple topological walks we can define a group of entities in the neighborhood of the starting coedge. The instructions which define the neighboring entities are marked in the figure (C). The BRepNet implementation allows you to define any group of entities using a kernel file. See here for an example of a kernel file for kernel entities shown above.

Convolution

The BRepNet convolution algorithm concatenates feature vectors from the entities defined in the kernel file relative to the starting coedge (red). The resulting vector is passed through an MLP and the output becomes the hidden state for this coedge in the next network layer. The procedure is repeated for each coedge in the model, then new hidden state vectors for the faces and edges are generated by pooling the coedge hidden states onto their parent faces and edges. See the paper for more details. The actual implementation of the BRepNet convolution can been seen in the BRepNetLayer.forward() method.

Citing this work

@inproceedings{lambourne2021brepnet,
 title = {BRepNet: A Topological Message Passing System for Solid Models},
 author = {Joseph G. Lambourne and Karl D.D. Willis and Pradeep Kumar Jayaraman and Aditya Sanghi and Peter Meltzer and Hooman Shayani},
 eprint = {2104.00706},
 eprinttype = {arXiv},
 eprintclass = {cs.LG},
 booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
 year = {2021}
}

Quickstart

Setting up the environment

git clone https://github.com/AutodeskAILab/BRepNet.git
cd BRepNet
conda env create -f environment.yml
conda activate brepnet

For GPU training you will need to change the pytorch install to include your cuda version. i.e.

conda install pytorch cudatoolkit=11.1 -c pytorch -c conda-forge

For training with multiple workers you may hit errors of the form OSError: [Errno 24] Too many open files. In this case you need to increase the number of available file handles on the machine using

ulimit -Sn 10000

I find I need to set the limit to 10000 for 10 worker threads.

Download the dataset

You can download the step distribution of the Fusion 360 Gallery segmentation dataset from this link. The zip is 3.2Gb. Alternatively download using curl

cd /path/to/where_you_keep_data/
curl https://fusion-360-gallery-dataset.s3-us-west-2.amazonaws.com/segmentation/s2.0.0/s2.0.0.zip -o s2.0.0.zip
unzip s2.0.0.zip

If you are interested in building your own dataset using other step files then the procedure is documented here

Processing the STEP data

Run the quickstart script to extract topology and geometry information from the step data ready to train the network.

cd BRepNet/
python -m pipeline.quickstart --dataset_dir /path/to/where_you_keep_data/s2.0.0 --num_workers 5

This may take up to 10 minutes to complete.

Training the model

You are then ready to train the model. The quickstart script should exit telling you a default command to use which should be something like

python -m train.train \
  --dataset_file /path/to/where_you_keep_data/s2.0.0/processed/dataset.json \
  --dataset_dir  /path/to/where_you_keep_data/s2.0.0/processed/ \
  --max_epochs 50

You may want to adjust the --num_workers and --gpus parameters to match your machine. The model runs with the pytorch-lightning ddp-spawn mode, so you can choose either 1 worker thread and multiple gpus or multiple threads and a single gpu. The options and hyper-parameters for BRepNet can be seen in BRepNet.add_model_specific_args in brepnet.py. For a full list of all hyper-parameters including those defined in pytorch-lightning see

python -m train.train --help

Monitoring the loss, accuracy and IoU

By default BRepNet will log data to tensorboard in a folder called logs. Each time you run the model the logs will be placed in a separate folder inside the logs directory with paths based on the date and time. At the start of training the path to the log folder will be printed into the shell. To monitory the process you can use

cd BRepNet
tensorboard --logdir logs

A trained model is also saved every time the validation loss reaches a minimum. The model will be in the same folder as the tensorboard logs

./logs/<date>/<time>/checkpoints

Testing the network

python -m eval.test \
  --dataset_file /path/to/dataset_file.json \
  --dataset_dir /path/to/data_dir \
  --model BRepNet/logs/<day>/<time>/checkpoints/epoch=x-step=x.ckpt

Visualizing the segmentation data

You can visualize the segmentation data using a Jupyter notebook and the tools in the visualization folder. An example of how to view the segmentation information in the dataset is here.

Evaluating the segmentation on your own STEP data

To evaluate the model on you own step data you can use the script evaluate_folder.py

python -m eval.evaluate_folder  \
  --dataset_dir ./example_files/step_examples
  --dataset_file ./example_files/feature_standardization/s2.0.0_step_all_features.json \
  --model ./example_files/pretrained_models/pretrained_s2.0.0_step_all_features_0519_073100.ckpt

This will loop over all step or stp files in ./example_files/step_examples and create "logits" files in example_files/step_examples/temp_working/logits. The logits files contain one row for each face in the step data. The columns give the probabilities that the corresponding face belongs to a given segment.

The notebook find_and_display_segmentation.ipynb runs through the entire process of evaluating the model and displaying the predicted segmentation.

Running the tests

If you need to run the tests then this can be done using

python -m unittest

The new data-pipeline based on Open Cascade

The original BRepNet pipeline used proprietary code to process data from solid models and convert these to network input. In an effort to make this BRepNet as reusable as possible we have converted this pipeline to work with Open Cascade and python OCC. As with any kind of translation between solid model formats, the translation to step introduces some differences in the data. These are documented here. When training with the default options given above you will obtain very similar numbers to the ones published.

License

Shield: CC BY-NC-SA 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
Autodesk AI Lab
Autodesk AI Lab
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs

PhyCRNet Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs Paper link: [ArXiv] By: Pu Ren, Chengping Rao, Yang

Pu Ren 11 Aug 23, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022