BASTA: The BAyesian STellar Algorithm

Related tags

Machine LearningBASTA
Overview

BASTA: BAyesian STellar Algorithm

Code style: black License: MIT Documentation Status arXiv

Current stable version: v1.0

Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well. Python 3.9 is currently not supported due to problems with h5py.

Before you begin

Please follow the repository here on GitHub to get notifications on new releases: Click "Watch" then "Custom" and tick "Releases.

Please have a look at our documentation.

There we have written a guide guide to installing BASTA.

On there, you will also find an introduction to running BASTA.

If you are curious on what BASTA can do, we have created several fitting examples and the exact code to run them available.

References and acknowledgments

There are two papers containing the rationale, main features, and capabilities of the code:

Please consider citing these references if you use BASTA in your work, and include the link to the code's repository https://github.com/BASTAcode/BASTA.

Due to its versatility, BASTA is used in a large variety of studies requiring robust determination of fundamental stellar properties. We have compiled a (non-exhaustive) list of papers using BASTA results that showcases these applications. If your paper using BASTA results is missing from the list please contact us.

Authors

The current core developing team are:

  • Víctor Aguirre Børsen-Koch
  • Jakob Lysgaard Rørsted
  • Mark Lykke Winther
  • Amalie Stokholm
  • Kuldeep Verma

Throughout the years, many people have contributed to the addition and development of various parts and modules of BASTA. We welcome further contributions from the community as well as issues reporting. Please look at the contribution section in the documentation for further details.

Comments
  • Update Asfgrid

    Update Asfgrid

    The Asfgrid of dnu corrections has been updated (https://iopscience.iop.org/article/10.3847/2515-5172/ac8b12) with more points and an extended range. It can be downloaded from here: http://www.physics.usyd.edu.au/k2gap/Asfgrid/ . This could be quite an upgrade for the BaSTI library to complement the Serenelli corrections.

    Update the code to use the new version -- REMEMBER that we patched the old version to work in BASTA. And that we added multiprocessing and therefore included some locks in the input to some routines.

    Note: This is actually more of an issue for the building routines! I have made this issue just to make sure that we check to compatibility when the grids are updated.

    grids 
    opened by jakobmoss 3
  • Rewrite _find_get to handle bools and added defaults for freqfit

    Rewrite _find_get to handle bools and added defaults for freqfit

    When during frequency fitting I discovered that it was required of me to specify threepoint=False in the freqparams xml tag. That makes no sense as (i) that is for ratio fitting and (ii) it should be False by default.

    I then discovered that _find_get could not handle the default value of threeport=False. This is a rewrite of that function.

    While I was at it, I added defaults for fcor (cubicBG14), correlations (False), and dnufrac (0.15). When fitting frequencies, you can simply just specify

    <freqparams>
        <freqpath value={path-to-frequencies}
    </freqparams>
    

    and add <freqs/> to fitparams and maybe set

    <freqplots>
        <True/>
    </freqplots>.
    
    opened by amaliestokholm 1
  • Epsilon-difference fitting and refactoring

    Epsilon-difference fitting and refactoring

    Implementation of epsilon-differences fitting (cf. our Plato-module). Major refactoring of the surface-independent fitting (i.e. ratios), especially the routines to do I/O and prepare the observations. Refactoring of plotting code (especially ratios) and added new plots.

    New plots:

    • Epsilon-differences diagnostic plots
    • Correlation map {freqs, ratios, epsdiff}
    • Plain echelle diagram
    • Single-panel ratio plots

    Other changes:

    • Ratios are interpolated to the observed frequencies
    opened by jakobmoss 0
  • Refactor `plot_seismic.echelle`

    Refactor `plot_seismic.echelle`

    This just refactors the code behind the echelle diagrams, which makes it more readable and less relient on the number of unique l values of the observations.

    It also makes small aesthetic changes such as changing $l$ to $\ell$ and adding the Frequency normalised by dnu axis to all plots and not just the duplicateechelle plots.

    opened by amaliestokholm 0
  • Requirements, json example, freqfit defaults

    Requirements, json example, freqfit defaults

    Update packages to newest versions (to make it installable on MacOS). Fix bug in json example. Fix bugs and add default values in frequency fitting (PR #17). Update plotting strings to match newest version of the Sharma/Stello (asfgrid) corrections.

    opened by jakobmoss 0
  • Update requirements and shipped grid

    Update requirements and shipped grid

    Two changes:

    • Bump requirements to newest versions and add bottleneck.
    • Switch to shipping the 16 Cyg A grid with new weights (based on Sobol volume). Reference examples updated to match; interpolation example still uses the old grid.
    opened by jakobmoss 0
  • 3-point ratios

    3-point ratios

    Add the option to use 3-point seperation ratios instead of the default 5-point. This is useful for reproducing older results or results from other groups.

    Additionally, the default of dnufit_in_ratios is changed to False (as it ought to have been always).

    opened by jakobmoss 0
  • Reddening coefficients for Gaia eDR3

    Reddening coefficients for Gaia eDR3

    Replaced the coefficients from DR2 with eDR3. The new coefficients follow the prescription of Casagrande and Vandenberg (2018). They are now the default Gaia coefficients

    opened by jakobmoss 0
  • Version 1.1.3

    Version 1.1.3

    Bring main to version 1.1.3.

    Calculation of bayesian weights when interpolating along a track is fixed -- before it used the base parameter, now it correctly uses seperation in age (or mass for isochrones). Details in #10 .

    opened by jakobmoss 0
  • Intpol bayweights along tracks fix

    Intpol bayweights along tracks fix

    The Bayesian weights along the tracks/isochrones "dage"/"dmass" were accidentially computed from the chosen base parameter in the interpolation, instead of the age/mass as they should. This update fixes that, by separately computing the "dage"/"dmass" for each track/isochrone after interpolation of all other quantities. This should also ensure they are always computed.

    opened by MLWinther 0
  • Version 1.1.2

    Version 1.1.2

    Bring main to version 1.1.2.

    Smoother KDE representations in the corner plots. Updated examples and documentation. Add published paper details.

    Full details in #7 .

    opened by jakobmoss 0
Releases(v1.2.0)
  • v1.2.0(Dec 16, 2022)

    New fitting mode and major refactoring.

    New features:

    • Epsilon-differences fitting (alternative surface-independent measure similar to ratios). Everything is derived only from the frequencies. Set e012 in fitparams (and activate correlations) and it runs. Includes new plots. The method will be described in the documentation in the next release and in more detail in an up-coming paper.

    Major changes:

    • Refactoring of all frequency-input handling, especially the treatment of ratios. Improves readability, reproducibility, and maintainability.
    • Refactoring of code to produce frequency-related plots. Common framework for clarity.
    • Ratios are interpolated to the observed frequencies (can be turned off).

    Minor changes:

    • Updated look of ratios plots (and now in single panel).
    • New echelle diagram with no pairing lines made by adding "echelle" to the plotting options. To get all of the different echelle diagrams in one go, add "allechelle". The examples are updated to use "allechelle".
    • New plot of the correlation matrix. Mainly for surface-independent fitting, where we always derive the full covariance matrix, but also works for frequencies if the input-covariances are provided.
    • New options for the frequency fitting (dnufit_in_ratios, interp_ratios).
    Source code(tar.gz)
    Source code(zip)
  • verma22(Nov 28, 2022)

    Version of BASTA used in Verma et al. (2022). This contains the new approach for fitting glitches and ratios together consistently (with a joint covariance matrix).

    This version is currently incompatible with the main version of BASTA and therefore released separately. The 'ratios and glitches together'-feature will be included in a main release later.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.6(Nov 14, 2022)

    Minor bugfix/infrastructure release.

    Changes:

    • Update packages to newest versions.
    • Fix bug in json example.
    • Fix bugs and add default values in frequency fitting.
    • Update plotting strings to match newest version of the Sharma/Stello (asfgrid) corrections.
    Source code(tar.gz)
    Source code(zip)
  • v1.1.5(May 23, 2022)

    Will make the installation run out-of-the-box again (mitigates known issue with the version of Black). All requirements bumped.

    Additional changes:

    • Added Gaia eDR3 extinction values
    • The shipped 16 Cyg A grid contains the new weights
    • Added an option to use 3-point frequency ratios
    Source code(tar.gz)
    Source code(zip)
  • v1.1.4(Jan 12, 2022)

  • v1.1.3(Jan 4, 2022)

  • v1.1.2(Dec 21, 2021)

    Minor release.

    Smoother KDE representations in the corner plots.

    Fixes bugs in the examples (everything should now run out-of-the-box). Updated documentation to match examples.

    Full details in #7 and #9 .

    Source code(tar.gz)
    Source code(zip)
  • v1.1.1(Dec 1, 2021)

    Bugfix release!

    Fixes an issue causing dnu's to be incorrectly scaled to the solar value if only fitted and not in the output.

    Full details in #5 and #6 .

    Source code(tar.gz)
    Source code(zip)
  • v1.1(Nov 26, 2021)

    The main attraction is the support of Python 3.9 through support of h5py 3.x. Requirements are updated, so the virtual environment should be updated as well.

    New features:

    • Debugging plots for interpolation
    • Suppress summary from xml-generation (add --quiet)

    Main changes:

    • Handling of dnu in the input-xml (now always called 'dnu' and translated as file is read) -- please re-generate input-xml files
    • Prettier formatting of the printed output to console and log

    Important bugfixes:

    • Priors work for dnu's in solar units
    • Make 'light' install case work again
    • Interpolation fixes (only l=0 modes; distance included; trimming of box)

    Full details given in the associated pull request.

    Source code(tar.gz)
    Source code(zip)
  • v1.0(Sep 30, 2021)

  • v1.0-rc(Sep 30, 2021)

Owner
BASTA team
The Bayesian Stellar Algorithm (BASTA) development team
BASTA team
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
Apple-voice-recognition - Machine Learning

Apple-voice-recognition Machine Learning How does Siri work? Siri is based on large-scale Machine Learning systems that employ many aspects of data sc

Harshith VH 1 Oct 22, 2021
Winning solution for the Galaxy Challenge on Kaggle

Winning solution for the Galaxy Challenge on Kaggle

Sander Dieleman 483 Jan 02, 2023
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
Implementation of deep learning models for time series in PyTorch.

List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Yunkai Zhang 275 Dec 28, 2022
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies

Amichay Oren 458 Dec 24, 2022
Dive into Machine Learning

Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You

Michael Floering 11.1k Jan 03, 2023
AutoX是一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色、简单易用、通用、自动化、灵活。

English | 简体中文 AutoX是什么? AutoX一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色: AutoX在多个kaggle数据集上,效果显著优于其他解决方案(见效果对比)。 简单易用: AutoX的接口和sklearn类似,方便上手使用。

4Paradigm 431 Dec 28, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
Machine Learning from Scratch

Machine Learning from Scratch Author: Shengxuan Wang From: Oregon State University Content: Building Machine Learning model from Scratch, without usin

ShawnWang 0 Jul 05, 2022
Upgini : data search library for your machine learning pipelines

Automated data search library for your machine learning pipelines → find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:

Upgini 175 Jan 08, 2023
healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

health-lesion-stovol healthy and lesion models for learning based on the joint estimation of stochasticity and volatility Reference please cite this p

5 Nov 01, 2022
PySpark + Scikit-learn = Sparkit-learn

Sparkit-learn PySpark + Scikit-learn = Sparkit-learn GitHub: https://github.com/lensacom/sparkit-learn About Sparkit-learn aims to provide scikit-lear

Lensa 1.1k Jan 04, 2023
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022