This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

Overview

OpenHGNN

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch. We integrate SOTA models of heterogeneous graph.

Key Features

  • Easy-to-Use: OpenHGNN provides easy-to-use interfaces for running experiments with the given models and dataset. Besides, we also integrate optuna to get hyperparameter optimization.
  • Extensibility: User can define customized task/model/dataset to apply new models to new scenarios.
  • Efficiency: The backend dgl provides efficient APIs.

Get Started

Requirements and Installation

  • Python >= 3.6

  • PyTorch >= 1.7.1

  • DGL >= 0.7.0

  • CPU or NVIDIA GPU, Linux, Python3

1. Python environment (Optional): We recommend using Conda package manager

conda create -n openhgnn python=3.7
source activate openhgnn

2. Pytorch: Install PyTorch. For example:

# CUDA versions: cpu, cu92, cu101, cu102, cu101, cu111
pip install torch==1.8.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html

3. DGL: Install DGL, follow their instructions. For example:

# CUDA versions: cpu, cu101, cu102, cu110, cu111
pip install --pre dgl-cu101 -f https://data.dgl.ai/wheels-test/repo.html

4. OpenHGNN and other dependencies:

git clone https://github.com/BUPT-GAMMA/OpenHGNN
cd OpenHGNN
pip install -r requirements.txt

Running an existing baseline model on an existing benchmark dataset

python main.py -m model_name -d dataset_name -t task_name -g 0 --use_best_config

usage: main.py [-h] [--model MODEL] [--task TASK] [--dataset DATASET] [--gpu GPU] [--use_best_config]

optional arguments: -h, --help show this help message and exit

​ --model MODEL, -m MODEL name of models

​ --task TASK, -t TASK name of task

​ --dataset DATASET, -d DATASET name of datasets

​ --gpu GPU, -g GPU controls which gpu you will use. If you do not have gpu, set -g -1.

​ --use_best_config use_best_config means you can use the best config in the dataset with the model. If you want to set the different hyper-parameter, modify the openhgnn.config.ini manually. The best_config will override the parameter in config.ini.

​ --use_hpo Besides use_best_config, we give a hyper-parameter example to search the best hyper-parameter automatically.

e.g.:

python main.py -m GTN -d imdb4GTN -t node_classification -g 0 --use_best_config

It is under development, and we release it in a nightly build version. For now, we just give some new models, such as HetGNN, NSHE, GTN, MAGNN, RSHN.

Note: If you are interested in some model, you can refer to the below models list.

Refer to the docs to get more basic and depth usage.

Models

Supported Models with specific task

The link will give some basic usage.

Model Node classification Link prediction Recommendation
RGCN[ESWC 2018] ✔️ ✔️
HAN[WWW 2019] ✔️
KGCN[WWW 2019] ✔️
HetGNN[KDD 2019] ✔️ ✔️
GTN[NeurIPS 2019] ✔️
RSHN[ICDM 2019] ✔️
DGMI[AAAI 2020] ✔️
MAGNN[WWW 2020] ✔️
CompGCN[ICLR 2020] ✔️ ✔️
NSHE[IJCAI 2020] ✔️
NARS[arxiv] ✔️
MHNF[arxiv] ✔️
HGSL[AAAI 2021] ✔️
HGNN-AC[WWW 2021] ✔️
HPN[TKDE 2021] ✔️
RHGNN[arxiv] ✔️

To be supported models

  • Metapath2vec[KDD 2017]

Candidate models

Contributors

GAMMA LAB [BUPT]: Tianyu Zhao, Yaoqi Liu, Fengqi Liang, Yibo Li, Yanhu Mo, Donglin Xia, Xinlong Zhai, Siyuan Zhang, Qi Zhang, Chuan Shi, Cheng Yang, Xiao Wang

BUPT: Jiahang Li, Anke Hu

DGL Team: Quan Gan, Jian Zhang

Comments
  • Attribute error

    Attribute error

    I am training HetGNN model for node classification. when i try to run the script for training. I get the following error. Please help me AttributeError: 'dict' object has no attribute 'srcdata'

    opened by faizan1234567 13
  • error in HetGNN_sampler.py

    error in HetGNN_sampler.py

    line 168, in assign_features_to_blocks assign_simple_node_features(blocks[0].srcdata, g, ntypes) AttributeError: 'dict' object has no attribute 'srcdata'

    opened by Kingrd97 10
  • 关于HetGNN-emb有完全相同的情况

    关于HetGNN-emb有完全相同的情况

    通过HetGNN跑提供的academic4HetGNN.zip 数据集。emb结果有完全相同的情况发生,原因未知。请问是否是符合预期的?

    如下测试:

    `import numpy as np

    emb = np.load('emb50.npy') list = emb[:,0]

    for i in np.unique(list): idx = np.argwhere(list == i) r = idx.reshape(1, -1).squeeze(0) if len(r) > 1: print('index for {}:\n'.format(i), r) for j in r: print(emb[j]) `

    opened by lixusign 9
  • Error to run without Cuda

    Error to run without Cuda

    File "C:\Users\XyZ\OpenHGNN\openhgnn\models\GTN_sparse.py", line 220, in forward sum_g = dgl.adj_sum_graph(A, 'w_sum') AttributeError: module 'dgl' has no attribute 'adj_sum_graph'

    This Issue came-up while I ran the command= python main.py -m GTN -d imdb4GTN -t node_classification -g -1 --use_best_config

    Can someone say me where I went wrong?

    opened by M-Somtirth 4
  • 无法使用gpu训练

    无法使用gpu训练

    python main.py -m KGCN -d LastFM4KGCN -t recommendation -g 0 --use_best_config

    RuntimeError: Tensor for argument #2 'mat1' is on CPU, but expected it to be on GPU (while checking arguments for addmm)

    opened by Tingting-Liu-star 4
  • where I can find the dataset build program ?

    where I can find the dataset build program ?

    for ex : https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/dataset#academic4HetGNN in this dataset

    when I extract_archive , A bin file about g。

    but where I can find , how to build this dataset use dgl standalone program ?

    opened by lixusign 4
  • Error when running GTN&fastGTN

    Error when running GTN&fastGTN

    Thank you very much for being able to provide this tool. I get an error when I run fastGTN using:

    python main.py -m fastGTN -t node_classification -d acm4GTN -g 0 --use_best_config

    The error is as follows:

    Traceback (most recent call last): File "D:/github/OpenHGNN/main.py", line 30, in OpenHGNN(args=config) File "D:\github\OpenHGNN\openhgnn\start.py", line 19, in OpenHGNN result = flow.train() File "D:\github\OpenHGNN\openhgnn\trainerflow\node_classification.py", line 112, in train train_loss = self._full_train_step() File "D:\github\OpenHGNN\openhgnn\trainerflow\node_classification.py", line 152, in _full_train_step logits = self.model(self.hg, h_dict)[self.category] File "D:\Program Files (x86)\anaconda\envs\OpenHGNN\lib\site-packages\torch\nn\modules\module.py", line 1110, in _call_impl return forward_call(*input, **kwargs) File "D:\github\OpenHGNN\openhgnn\models\fastGTN.py", line 119, in forward hat_A = self.layersi File "D:\Program Files (x86)\anaconda\envs\OpenHGNN\lib\site-packages\torch\nn\modules\module.py", line 1110, in _call_impl return forward_call(*input, **kwargs) File "D:\github\OpenHGNN\openhgnn\models\fastGTN.py", line 180, in forward sum_g = dgl.adj_sum_graph(A, 'w_sum') File "D:\Program Files (x86)\anaconda\envs\OpenHGNN\lib\site-packages\dgl\transforms\functional.py", line 2766, in adj_sum_graph C_gidx, C_weights = F.csrsum(gidxs, weights) File "D:\Program Files (x86)\anaconda\envs\OpenHGNN\lib\site-packages\dgl\backend\pytorch\sparse.py", line 817, in csrsum nrows, ncols, C_indptr, C_indices, C_eids, C_weights = CSRSum.apply(gidxs, *weights) File "D:\Program Files (x86)\anaconda\envs\OpenHGNN\lib\site-packages\dgl\backend\pytorch\sparse.py", line 668, in forward gidxC, C_weights = _csrsum(gidxs, weights) File "D:\Program Files (x86)\anaconda\envs\OpenHGNN\lib\site-packages\dgl\sparse.py", line 776, in _csrsum C, C_weights = _CAPI_DGLCSRSum(As, [F.to_dgl_nd(w) for w in A_weights]) File "D:\Program Files (x86)\anaconda\envs\OpenHGNN\lib\site-packages\dgl_ffi_ctypes\function.py", line 188, in call check_call(_LIB.DGLFuncCall( File "D:\Program Files (x86)\anaconda\envs\OpenHGNN\lib\site-packages\dgl_ffi\base.py", line 65, in check_call raise DGLError(py_str(_LIB.DGLGetLastError())) dgl._ffi.base.DGLError: [15:31:21] C:\Users\Administrator\dgl-0.5\src\array\kernel.cc:471: Check failed: A[i].indptr->dtype == idtype (int64 vs. int32) : The ID types of all graphs must be equal.

    I use the following software versions:

    python = 3.8 cudatoolkit = 11.3.1 torch = 1.11.0+cu113 dgl-cu113 = 0.8.1 & 0.8.0

    Then I ran the same version of the software on my ubuntu server with no errors.

    opened by huihuijiangqiang 3
  • bugs in minibatch trainning

    bugs in minibatch trainning

    🐛 Bug

    To Reproduce

    error occurred in _mini_train_step function in trainerflow/node_classification.py when use mini_batch_flag in node_classification task and SimpleHGN model

    import argparse
    from openhgnn.experiment import Experiment
    
    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        parser.add_argument('--model', '-m', default='SimpleHGN', type=str, help='name of models')
        parser.add_argument('--task', '-t', default='node_classification', type=str, help='name of task')
        # link_prediction / node_classification
        parser.add_argument('--dataset', '-d', default='imdb4MAGNN', type=str, help='name of datasets')
        parser.add_argument('--gpu', '-g', default='0', type=int, help='-1 means cpu')
        parser.add_argument('--use_best_config', action='store_true', help='will load utils.best_config')
        parser.add_argument('--load_from_pretrained', action='store_true', help='load model from the checkpoint')
        args = parser.parse_args()
    
        experiment = Experiment(model=args.model, dataset=args.dataset, task=args.task, gpu=args.gpu,
                                use_best_config=args.use_best_config, load_from_pretrained=args.load_from_pretrained, mini_batch_flag = True, batch_size=64)
        experiment.run()
    
    

    Expected behavior

    Minibatch training on a large heterograph

    Environment

    • torch==1.12.1
    • dgl-cu113==0.9.0 # for CUDA support
    • openhgnn==0.3.0
    • Linux
    • Python 3.8.13

    Additional context

    • the default minibatch sampler is MultiLayerFullNeighborSampler
    • the blocks is a list (line 164) and the expected input in the forward function of the model (e.g. SimpleHGN) is a hg(line 159)
    for i, (input_nodes, seeds, blocks) in enumerate(loader_tqdm):
        blocks = [blk.to(self.device) for blk in blocks]
        ...
        logits = self.model(blocks, emb)[self.category]
    
    def forward(self, hg, h_dict):
        with hg.local_scope():
            hg.ndata['h'] = h_dict
    
    opened by suxnju 2
  • 关于HetGNN的emb顺序困惑

    关于HetGNN的emb顺序困惑

    请教下 在 x = self.model(blocks[0], input_features) 中返回的x 是dict 。 他里面每种node_type 的emb 和blocks[0] 的入参的点的顺序如何对应?

    我核对了以后 发现并不是 blocks[0].srcnodes[node_type].data[dgl.NID] 所代表的节点顺序。

    opened by lixusign 2
  • HIN_LinkPrediction' object has no attribute 'get_idx'

    HIN_LinkPrediction' object has no attribute 'get_idx'

    \OpenHGNN-main\openhgnn\tasks\link_prediction.py", line 32, in init self.train_hg, self.val_hg, self.test_hg = self.dataset.get_idx() AttributeError: 'HIN_LinkPrediction' object has no attribute 'get_idx'

    opened by xuptacm 2
  • 无法使用ACM4GTN数据集运行GTN

    无法使用ACM4GTN数据集运行GTN

    运行 python main.py -m GTN -t node_classification -d acm4GTN -g 0 --use_best_config

    报错信息 Using backend: pytorch Use the best config. Done saving data into cached files. Modify the out_dim with num_classes 0%| | 0/50 [00:00<?, ?it/s] Traceback (most recent call last): File "main.py", line 24, in OpenHGNN(args=config) File "/home/special/user/lihaoran/OpenHGNN_clone_from_github/openhgnn/start.py", line 17, in OpenHGNN result = flow.train() File "/home/special/user/lihaoran/OpenHGNN_clone_from_github/openhgnn/trainerflow/node_classification.py", line 77, in train loss = self._full_train_step() File "/home/special/user/lihaoran/OpenHGNN_clone_from_github/openhgnn/trainerflow/node_classification.py", line 109, in _full_train_step loss.backward() File "/opt/miniconda3/lib/python3.7/site-packages/torch/_tensor.py", line 255, in backward torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs) File "/opt/miniconda3/lib/python3.7/site-packages/torch/autograd/init.py", line 149, in backward allow_unreachable=True, accumulate_grad=True) # allow_unreachable flag File "/opt/miniconda3/lib/python3.7/site-packages/torch/autograd/function.py", line 87, in apply return self._forward_cls.backward(self, *args) # type: ignore[attr-defined] File "/opt/miniconda3/lib/python3.7/site-packages/dgl/backend/pytorch/sparse.py", line 544, in backward gidxA.reverse(), A_weights, gidxC, dC_weights, gidxB.number_of_ntypes()) File "/opt/miniconda3/lib/python3.7/site-packages/dgl/backend/pytorch/sparse.py", line 638, in csrmm CSRMM.apply(gidxA, A_weights, gidxB, B_weights, num_vtypes) File "/opt/miniconda3/lib/python3.7/site-packages/dgl/backend/pytorch/sparse.py", line 528, in forward gidxC, C_weights = _csrmm(gidxA, A_weights, gidxB, B_weights, num_vtypes) File "/opt/miniconda3/lib/python3.7/site-packages/dgl/sparse.py", line 548, in _csrmm A, F.to_dgl_nd(A_weights), B, F.to_dgl_nd(B_weights), num_vtypes) File "dgl/_ffi/_cython/./function.pxi", line 287, in dgl._ffi._cy3.core.FunctionBase.call File "dgl/_ffi/_cython/./function.pxi", line 232, in dgl._ffi._cy3.core.FuncCall File "dgl/_ffi/_cython/./base.pxi", line 155, in dgl._ffi._cy3.core.CALL dgl._ffi.base.DGLError: [17:18:53] /opt/dgl/src/array/cuda/csr_mm.cu:87: Check failed: e == CUSPARSE_STATUS_SUCCESS: CUSPARSE ERROR: 11 Stack trace: [bt] (0) /opt/miniconda3/lib/python3.7/site-packages/dgl/libdgl.so(dmlc::LogMessageFatal::~LogMessageFatal()+0x4f) [0x7fd13c2565df] [bt] (1) /opt/miniconda3/lib/python3.7/site-packages/dgl/libdgl.so(std::pair<dgl::aten::CSRMatrix, dgl::runtime::NDArray> dgl::aten::cusparse::CusparseSpgemm<float, int>(dgl::aten::CSRMatrix const&, dgl::runtime::NDArray, dgl::aten::CSRMatrix const&, dgl::runtime::NDArray)+0x625) [0x7fd13c6accd5] [bt] (2) /opt/miniconda3/lib/python3.7/site-packages/dgl/libdgl.so(std::pair<dgl::aten::CSRMatrix, dgl::runtime::NDArray> dgl::aten::CSRMM<2, long, float>(dgl::aten::CSRMatrix const&, dgl::runtime::NDArray, dgl::aten::CSRMatrix const&, dgl::runtime::NDArray)+0x59e) [0x7fd13c6af81e] [bt] (3) /opt/miniconda3/lib/python3.7/site-packages/dgl/libdgl.so(dgl::aten::CSRMM(dgl::aten::CSRMatrix, dgl::runtime::NDArray, dgl::aten::CSRMatrix, dgl::runtime::NDArray)+0x10d6) [0x7fd13c493466] [bt] (4) /opt/miniconda3/lib/python3.7/site-packages/dgl/libdgl.so(+0x48cfa8) [0x7fd13c493fa8] [bt] (5) /opt/miniconda3/lib/python3.7/site-packages/dgl/libdgl.so(+0x48d724) [0x7fd13c494724] [bt] (6) /opt/miniconda3/lib/python3.7/site-packages/dgl/libdgl.so(DGLFuncCall+0x48) [0x7fd13c4d5c78] [bt] (7) /opt/miniconda3/lib/python3.7/site-packages/dgl/_ffi/_cy3/core.cpython-37m-x86_64-linux-gnu.so(+0x163ea) [0x7fd1136f03ea] [bt] (8) /opt/miniconda3/lib/python3.7/site-packages/dgl/_ffi/_cy3/core.cpython-37m-x86_64-linux-gnu.so(+0x1695b) [0x7fd1136f095b]

    GPU:A100-PCIE DGL版本:dgl-cu111-0.8a211008 看起来可以获得logits,但是无法进行反向传播

    很奇怪的是运行IMDB4GTN数据集时没有任何问题 使用MHNF运行ACM4GTN也报了同样的错误

    我看到GTN有两个,一个是叫GTN_spare.py一个GTN.py,默认是用的GTN_spare。用GTN.py可以运行ACM4GTN,但是准确率只有60%上下

    opened by a772316182 2
  • Help needed: Wanted behavior of Experiment.specific_trainerflow.get method and task/trainerflow registration

    Help needed: Wanted behavior of Experiment.specific_trainerflow.get method and task/trainerflow registration

    Hi, I am trying to create a new trainer flow, as well as a new task. I am struggling a bit and have a few questions: When I register them with @register_flow(str_flow) and @register_task(str_task), must str_taskand str_flowbe identical?
    Because as my flow is not specific to a model, it is not in the specific_trainerflowdictionnary defined in the Experiment class. So the line 92 in experiment.py( trainerflow = self.specific_trainerflow.get(self.config.model, self.config.task) ) returns the key of the task as the trainerflow_key. Is this the wanted behavior?

    Thanks!

    opened by Carayolj 0
  • run HGSL model error

    run HGSL model error

    🐛 Bug

    when i run the suggest command :

    python main.py -m HGSL -d acm4GTN -t node_classification -g 0 --use_best_config
    

    this raise an error like:

    Traceback (most recent call last): File "main.py", line 21, in experiment.run() File "/workspace/OpenHGNN/openhgnn/experiment.py", line 97, in run flow = build_flow(self.config, trainerflow) File "/workspace/OpenHGNN/openhgnn/trainerflow/init.py", line 46, in build_flow return FLOW_REGISTRYflow_name File "/workspace/OpenHGNN/openhgnn/trainerflow/node_classification.py", line 42, in init self.model = build_model(self.model).build_model_from_args(self.args, self.hg).to(self.device) File "/workspace/OpenHGNN/openhgnn/models/HGSL.py", line 106, in build_model_from_args mp_emb_dim = hg.nodes["paper"].data["pap_m2v_emb"].shape[1] File "/opt/conda/lib/python3.7/site-packages/dgl/view.py", line 73, in getitem return self._graph._get_n_repr(self._ntid, self._nodes)[key] File "/opt/conda/lib/python3.7/site-packages/dgl/frame.py", line 622, in getitem return self._columns[name].data KeyError: 'pap_m2v_emb'

    it seems like there is no pap_m2v_emb key in paper nodes data, so how to fix it?


    more error update: when I just make mp_emb_dim=0 to jump this line, more errors raise, such as no hidden_dimmini_batch_flag ... defined in config, besides, when I successfully run this model, another exception was raised:

    image

    Do you have an updated version of the model?

    Sincere thanks.

    To Reproduce

    Steps to reproduce the behavior:

    1.cd OpenHGNN 2.python main.py -m HGSL -d acm4GTN -t node_classification -g 0 --use_best_config

    Expected behavior

    Environment

    • OpenHGNN Version (e.g., 1.0):
    • PyTorch latest, DGL latest
    • Linux
    • python main.py -m HGSL -d acm4GTN -t node_classification -g 0 --use_best_config
    • best_config for recommend
    opened by vchopin 1
  • How to train model using own dataset?

    How to train model using own dataset?

    ❓ Questions and Help

    I want to train my own HNN data, could you tell me how to edit this code? the data in ./openhgnn/dataset are download from https://s3.cn-north-1.amazonaws.com.cn/dgl-data/ and is .bin file. So how could I change this dataset? 救救孩子

    opened by Fino2020 1
  • [DHNE]

    [DHNE]

    Description

    Checklist

    Please feel free to remove inapplicable items for your PR.

    • [x] The PR title starts with [$CATEGORY] (such as [NN], [Model], [Doc], [Feature]])
    • [x] Changes are complete (i.e. I finished coding on this PR)
    • [x] All changes have test coverage
    • [x] Code is well-documented
    • [x] To the best of my knowledge, examples are either not affected by this change, or have been fixed to be compatible with this change
    • [x] Related issue is referred in this PR
    • [x] If the PR is for a new model/paper, I've updated the example index here.

    Changes

    opened by Vera-200 0
  • [Model]Mg2vec

    [Model]Mg2vec

    Description

    Add the Mg2vec Model and add the EdgeClassification Task

    Checklist

    Please feel free to remove inapplicable items for your PR.

    • [ ] The PR title starts with [$CATEGORY] (such as [NN], [Model], [Doc], [Feature]])
    • [ ] Changes are complete (i.e. I finished coding on this PR)
    • [ ] All changes have test coverage
    • [ ] Code is well-documented
    • [ ] To the best of my knowledge, examples are either not affected by this change, or have been fixed to be compatible with this change
    • [ ] Related issue is referred in this PR
    • [ ] If the PR is for a new model/paper, I've updated the example index here.

    Changes

    • [ ] Add configs for Mg2vec in config.ini and config.py
    • [ ] Add Mg2vec.py, which contains the model part
    • [ ] Add mg2vec_sampler.py for reading data
    • [ ] Add mg2vec_trainer.py for training
    • [ ] Add EdgeClassificationDataset.py for EdgeClassification Task, which is a modified version of NodeClassificationDataset.py
    • [ ] Add mg2vec_dataset.py for download/read mg2vec dataset
    • [ ] Add edge_classification.py, which is a modified version of node_classification.py
    • [ ] Add ec_with_SVC function in evaluator.py for edge_classification task
    • [ ] Add readme.md for Mg2vec model
    • [ ] Modify corresponding init.py and experiment.py
    opened by null-xyj 0
Releases(v0.3.0)
Owner
BUPT GAMMA Lab
Graph dAta Mining and MAchine learning Lab at Beijing University of Posts and Telecommunications
BUPT GAMMA Lab
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021