Multilingual word vectors in 78 languages

Overview

Aligning the fastText vectors of 78 languages

Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; meaning that while similar words within a language share similar vectors, translation words from different languages do not have similar vectors. In a recent paper at ICLR 2017, we showed how the SVD can be used to learn a linear transformation (a matrix), which aligns monolingual vectors from two languages in a single vector space. In this repository we provide 78 matrices, which can be used to align the majority of the fastText languages in a single space.

This readme explains how the matrices should be used. We also present a simple evaluation task, where we show we are able to successfully predict the translations of words in multiple languages. Our procedure relies on collecting bilingual training dictionaries of word pairs in two languages, but remarkably we are able to successfully predict the translations of words between language pairs for which we had no training dictionary!

Word embeddings define the similarity between two words by the normalised inner product of their vectors. The matrices in this repository place languages in a single space, without changing any of these monolingual similarity relationships. When you use the resulting multilingual vectors for monolingual tasks, they will perform exactly the same as the original vectors. To learn more about word embeddings, check out Colah's blog or Sam's introduction to vector representations.

Note that since we released this repository Facebook have released an additional 204 languages; however the word vectors of the original 90 languages have not changed, and the transformations provided in this repository will still work. If you would like to learn your own alignment matrices, we provide an example in align_your_own.ipynb.

If you use this repository, please cite:

Offline bilingual word vectors, orthogonal transformations and the inverted softmax
Samuel L. Smith, David H. P. Turban, Steven Hamblin and Nils Y. Hammerla
ICLR 2017 (conference track)

TLDR, just tell me what to do!

Clone a local copy of this repository, and download the fastText vectors you need from here. I'm going to assume you've downloaded the vectors for French and Russian in the text format. Let's say we want to compare the similarity of "chat" and "кот". We load the word vectors:

from fasttext import FastVector
fr_dictionary = FastVector(vector_file='wiki.fr.vec')
ru_dictionary = FastVector(vector_file='wiki.ru.vec')

We can extract the word vectors and calculate their cosine similarity:

fr_vector = fr_dictionary["chat"]
ru_vector = ru_dictionary["кот"]
print(FastVector.cosine_similarity(fr_vector, ru_vector))
# Result should be 0.02

The cosine similarity runs between -1 and 1. It seems that "chat" and "кот" are neither similar nor dissimilar. But now we apply the transformations to align the two dictionaries in a single space:

fr_dictionary.apply_transform('alignment_matrices/fr.txt')
ru_dictionary.apply_transform('alignment_matrices/ru.txt')

And re-evaluate the cosine similarity:

print(FastVector.cosine_similarity(fr_dictionary["chat"], ru_dictionary["кот"]))
# Result should be 0.43

Turns out "chat" and "кот" are pretty similar after all. This is good, since they both mean "cat".

Ok, so how did you obtain these matrices?

Of the 89 languages provided by Facebook, 78 are supported by the Google Translate API. We first obtained the 10,000 most common words in the English fastText vocabulary, and then use the API to translate these words into the 78 languages available. We split this vocabulary in two, assigning the first 5000 words to the training dictionary, and the second 5000 to the test dictionary.

We described the alignment procedure in this blog. It takes two sets of word vectors and a small bilingual dictionary of translation pairs in two languages; and generates a matrix which aligns the source language with the target. Sometimes Google translates an English word to a non-English phrase, in these cases we average the word vectors contained in the phrase.

To place all 78 languages in a single space, we align every language to the English vectors (the English matrix is the identity).

Right, now prove that this procedure actually worked...

To prove that the procedure works, we can predict the translations of words not seen in the training dictionary. For simplicity we predict translations by nearest neighbours. So for example, if we wanted to translate "dog" into Swedish, we would simply find the Swedish word vector whose cosine similarity to the "dog" word vector is highest.

First things first, let's test the translation performance from English into every other language. For each language pair, we extract a set of 2500 word pairs from the test dictionary. The precision @n denotes the probability that, of the 2500 target words in this set, the true translation was one of the top n nearest neighbours of the source word. If the alignment was completely random, we would expect the precision @1 to be around 0.0004.

Target language Precision @1 Precision @5 Precision @10
fr 0.73 0.86 0.88
pt 0.73 0.86 0.89
es 0.72 0.85 0.88
it 0.70 0.86 0.89
nl 0.68 0.83 0.86
no 0.68 0.85 0.89
da 0.66 0.84 0.88
ca 0.66 0.81 0.86
sv 0.65 0.82 0.86
cs 0.64 0.81 0.85
ro 0.63 0.81 0.85
de 0.62 0.75 0.78
pl 0.62 0.79 0.83
hu 0.61 0.80 0.84
fi 0.61 0.80 0.84
eo 0.61 0.80 0.85
ru 0.60 0.78 0.82
gl 0.60 0.77 0.82
mk 0.58 0.79 0.84
id 0.58 0.81 0.86
bg 0.57 0.77 0.82
ms 0.57 0.81 0.86
uk 0.57 0.75 0.79
sh 0.56 0.77 0.81
hr 0.56 0.75 0.80
tr 0.56 0.77 0.81
sl 0.56 0.77 0.82
el 0.54 0.75 0.80
sk 0.54 0.75 0.81
et 0.53 0.73 0.78
sr 0.53 0.72 0.77
af 0.52 0.75 0.80
lt 0.50 0.72 0.79
ar 0.48 0.69 0.75
bs 0.47 0.70 0.77
lv 0.47 0.68 0.75
eu 0.46 0.68 0.75
fa 0.45 0.68 0.75
hy 0.43 0.66 0.73
sq 0.43 0.65 0.71
be 0.43 0.64 0.70
zh 0.40 0.68 0.75
ka 0.40 0.63 0.71
cy 0.39 0.63 0.71
hi 0.39 0.58 0.63
az 0.38 0.60 0.67
ko 0.37 0.58 0.66
te 0.36 0.56 0.63
kk 0.35 0.60 0.68
he 0.33 0.45 0.48
fy 0.33 0.52 0.60
vi 0.31 0.53 0.62
ta 0.31 0.50 0.56
bn 0.30 0.49 0.56
ur 0.29 0.52 0.61
is 0.29 0.51 0.59
tl 0.28 0.51 0.59
kn 0.28 0.43 0.46
gu 0.25 0.44 0.51
mn 0.25 0.49 0.58
uz 0.24 0.43 0.51
si 0.22 0.40 0.45
ml 0.21 0.35 0.39
ky 0.20 0.40 0.49
mr 0.20 0.37 0.44
th 0.20 0.33 0.38
la 0.19 0.34 0.42
ja 0.18 0.44 0.56
ne 0.16 0.33 0.38
pa 0.16 0.32 0.38
tg 0.14 0.31 0.39
km 0.12 0.26 0.30
my 0.10 0.19 0.23
lb 0.09 0.18 0.21
mg 0.07 0.18 0.25
ceb 0.06 0.13 0.18

As you can see, the alignment is consistently much better than random! In general, the procedure works best for other European languages like French, Portuguese and Spanish. We use 2500 word pairs, because of the 5000 words in the test dictionary, not all the words found by the Google Translate API are actually present in the fastText vocabulary.

Now let's do something much more exciting, let's evaluate the translation performance between all possible language pairs. We exhibit this translation performance on the heatmap below, where the colour of an element denotes the precision @1 when translating from the language of the row into the language of the column.

Cool huh!

We should emphasize that all of the languages were aligned to English only. We did not provide training dictionaries between non-English language pairs. Yet we are still able to succesfully predict translations between pairs of non-English languages remarkably accurately.

We expect the diagonal elements of the matrix above to be 1, since a language should translate perfectly to itself. However in practice this does not always occur, because we constructed the training and test dictionaries by translating common English words into the other languages. Sometimes multiple English words translate to the same non-English word, and so the same non-English word may appear multiple times in the test set. We haven't properly accounted for this, which reduces the translation performance.

Intriquingly, even though we only directly aligned the languages to English, sometimes a language translates better to another non-English language than it does to English! We can calculate the inter-pair precision of two languages; the average precision from language 1 to language 2 and vice versa. We can also calculate the English-pair precision; the average of the precision from English to language 1 and from English to language 2. Below we list all the language pairs for which the inter-pair precision exceeds the English-pair precision:

Language 1 Language 2 Inter-pair precision @1 English-pair precision @1
bs sh 0.88 0.52
ru uk 0.84 0.58
ca es 0.82 0.69
cs sk 0.82 0.59
hr sh 0.78 0.56
be uk 0.77 0.50
gl pt 0.76 0.66
bs hr 0.74 0.52
be ru 0.73 0.51
da no 0.73 0.67
sr sh 0.73 0.54
pt es 0.72 0.72
ca pt 0.70 0.69
gl es 0.70 0.66
hr sr 0.69 0.54
ca gl 0.68 0.63
bs sr 0.67 0.50
mk sr 0.56 0.55
kk ky 0.30 0.28

All of these language pairs share very close linguistic roots. For instance the first pair above are Bosnian and Serbo-Croatian; Bosnian is a variant of Serbo-Croatian. The second pair is Russian and Ukranian; both east-slavic languages. It seems that the more similar two languages are, the more similar the geometry of their fastText vectors; leading to improved translation performance.

How do I know these matrices don't change the monolingual vectors?

The matrices provided in this repository are orthogonal. Intuitively, each matrix can be broken down into a series of rotations and reflections. Rotations and reflections do not change the distance between any two points in a vector space; and consequently none of the inner products between word vectors within a language are changed, only the inner products between the word vectors of different languages are affected.

References

There are a number of great papers on this topic. We've listed a few of them below:

  1. Enriching word vectors with subword information
    Bojanowski et al., 2016
  2. Offline bilingual word vectors, orthogonal transformations and the inverted softmax
    Smith et al., ICLR 2017
  3. Exploiting similarities between languages for machine translation
    Mikolov et al., 2013
  4. Improving vector space word representations using multilingual correlation
    Faruqui and Dyer, EACL 2014
  5. Improving zero-shot learning by mitigating the hubness problem
    Dinu et al., 2014
  6. Learning principled bilingual mappings of word embeddings while preserving monolingual invariance
    Artetxe et al., EMNLP 2016

Training and test dictionaries

A number of readers have expressed an interest in the training and test dictionaries we used in this repository. We would have liked to upload these, however, while we have not taken legal advice, we are concerned that this could be interpreted as breaking the terms of the Google Translate API.

License

The transformation matrices are distributed under the Creative Commons Attribution-Share-Alike License 3.0.

Owner
Babylon Health
Putting an accessible and affordable health service in the hands of every person on earth.
Babylon Health
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Diaformer Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022) Diaformer is an efficient model for automatic diagnosis via symp

Junying Chen 20 Dec 13, 2022
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

Franck Dernoncourt 1.6k Dec 27, 2022
2021海华AI挑战赛·中文阅读理解·技术组·第三名

文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。

21 Dec 26, 2022
Maha is a text processing library specially developed to deal with Arabic text.

An Arabic text processing library intended for use in NLP applications Maha is a text processing library specially developed to deal with Arabic text.

Mohammad Al-Fetyani 184 Nov 27, 2022
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

2 Jan 20, 2022
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
Official code repository of the paper Linear Transformers Are Secretly Fast Weight Programmers.

Linear Transformers Are Secretly Fast Weight Programmers This repository contains the code accompanying the paper Linear Transformers Are Secretly Fas

Imanol Schlag 77 Dec 19, 2022
Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE

smaller-LaBSE LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fi

Jeong Ukjae 13 Sep 02, 2022
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
Blender addon - Scrub timeline from viewport with a shortcut

Viewport scrub timeline Move in the timeline directly in viewport and snap to nearest keyframe Note : This standalone feature will be added in the nat

Samuel Bernou 40 Nov 07, 2022
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
Watson Natural Language Understanding and Knowledge Studio

Material de demonstração dos serviços: Watson Natural Language Understanding e Knowledge Studio Visão Geral: https://www.ibm.com/br-pt/cloud/watson-na

Vanderlei Munhoz 4 Oct 24, 2021
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022