cisip-FIRe - Fast Image Retrieval

Overview

cisip-FIRe - Fast Image Retrieval

Documentation Status

Documentation: https://fast-image-retrieval.readthedocs.io/en/latest/

Introduction

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This framework implements most of the major binary hashing methods, together with different popular backbone networks and public datasets.

Major features

  • One for All

    Herein, we unified (i) various binary hashing methods, (ii) different backbone, and (iii) multiple datasets under a single framework to ease the research and benchmarking in this domain. It supports popular binary hashing methods, e.g. HashNet, GreedyHash, DPN, OrthoHash, etc.

  • Modularity

    We break the framework into parts so that one can easily implement their own method by joining up the components.

License

This project is released under BSD 3-Clause License.

Changelog

Please refer to Changelog for more detail.

Implemented method/backbone/datasets

Backbone

  1. Alexnet
  2. VGG{16}
  3. ResNet{18,34,50,101,152}

Loss (Method)

Supervised

Method Config Template Loss Name 64bit ImageNet AlexNet ([email protected])
ADSH adsh.yaml adsh 0.645
BiHalf bihalf-supervised.yaml bihalf-supervised 0.684
Cross Entropy ce.yaml ce 0.434
CSQ csq.yaml csq 0.686
DFH dfh.yaml dfh 0.689
DPN dpn.yaml dpn 0.692
DPSH dpsh.yaml dpsh 0.599
DTSH dtsh.yaml dtsh 0.608
GreedyHash greedyhash.yaml greedyhash 0.667
HashNet hashnet.yml hashnet 0.588
JMLH jmlh.yaml jmlh 0.664
OrthoCos(OrthoHash) orthocos.yaml orthocos 0.701
OrthoArc(OrthoHash) orthoarc.yaml orthoarc 0.698
SDH-C sdhc.yaml sdhc 0.639

Unsupervised

Method Config Template Loss Name 64bit ImageNet AlexNet ([email protected])
BiHalf bihalf.yaml bihalf 0.403
CIBHash cibhash.yaml cibhash 0.322
GreedyHash greedyhash-unsupervised.yaml greedyhash-unsupervised 0.407
SSDH ssdh.yaml ssdh 0.146
TBH tbh.yaml tbh 0.324

Shallow (Non-Deep learning methods)

Method Config Template Loss Name 64bit ImageNet AlexNet ([email protected])
ITQ itq.yaml itq 0.402
LsH lsh.yaml lsh 0.206
PCAHash pca.yaml pca 0.405
SH sh.yaml sh 0.350
Shallow methods only works with descriptor datasets. We will upload the descriptor datasets and 

Datasets

Dataset Name in framework
ImageNet100 imagenet100
NUS-WIDE nuswide
MS-COCO coco
MIRFLICKR/Flickr25k mirflickr
Stanford Online Product sop
Cars dataset cars
CIFAR10 cifar10

Installation

Please head up to Get Started Docs for guides on setup conda environment and installation.

Tutorials

Please head up to Tutorials Docs for guidance.

Reference

If you find this framework useful in your research, please consider cite this project.

@inproceedings{dpn2020,
  title={Deep Polarized Network for Supervised Learning of Accurate Binary Hashing Codes.},
  author={Fan, Lixin and Ng, Kam Woh and Ju, Ce and Zhang, Tianyu and Chan, Chee Seng},
  booktitle={IJCAI},
  pages={825--831},
  year={2020}
}

@inproceedings{orthohash2021,
  title={One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective},
  author={Hoe, Jiun Tian and Ng, Kam Woh and Zhang, Tianyu and Chan, Chee Seng and Song, Yi-Zhe and Xiang, Tao},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Contributing

We welcome the contributions to improve this project. Please file your suggestions/issues by creating new issues or send us a pull request for your new changes/improvement/features/fixes.

Owner
CISiP Lab
Center of Image and Signal Processing (CISiP) Lab
CISiP Lab
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022