(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Overview

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing by Haoyu He, Jing Zhang, Qiming Zhang and Dacheng Tao.


Grapy-ML:

GPM


Getting Started:

Environment:

  • Pytorch = 1.1.0

  • torchvision

  • scipy

  • tensorboardX

  • numpy

  • opencv-python

  • matplotlib

Data Preparation:

You need to download the three datasets. The CIHP dataset and ATR dataset can be found in this repository and our code is heavily borrowed from it as well.

Then, the datasets should be arranged in the following folder, and images should be rearranged with the provided file structure.

/data/dataset/

Testing:

The pretrain models and some trained models are provided here for testing and training.

Model Name Description Derived from
deeplab_v3plus_v3.pth The Deeplab v3+'s pretrain weights
CIHP_pretrain.pth The reproduced Deeplab v3+ model trained on CIHP dataset deeplab_v3plus_v3.pth
CIHP_trained.pth GPM model trained on CIHP dataset CIHP_pretrain.pth
deeplab_multi-dataset.pth The reproduced multi-task learning Deeplab v3+ model trained on CIHP, PASCAL-Person-Part and ATR dataset deeplab_v3plus_v3.pth
GPM-ML_multi-dataset.pth Grapy-ML model trained on CIHP, PASCAL-Person-Part and ATR dataset deeplab_multi-dataset.pth
GPM-ML_finetune_PASCAL.pth Grapy-ML model finetuned on PASCAL-Person-Part dataset GPM-ML_multi-dataset.pth

To test, run the following two scripts:

bash eval_gpm.sh
bash eval_gpm_ml.sh

Training:

GPM:

During training, you first need to get the Deeplab pretrain model(e.g. CIHP_dlab.pth) on each dataset. Such act aims to provide a trustworthy initial raw result for the GSA operation in GPM.

bash train_dlab.sh

The imageNet pretrain model is provided in the following table, and you should swith the dataset name and target classes to the dataset you want in the script. (CIHP: 20 classes, PASCAL: 7 classes and ATR: 18 classes)

In the next step, you should utilize the Deeplab pretrain model to further train the GPM model.

bash train_gpm.sh 

It is recommended to follow the training settings in our paper to reproduce the results.

GPM-ML:

Firstly, you can conduct the deeplab pretrain process by the following script:

bash train_dlab_ml.sh

The multi-dataset Deeplab V3+ is transformed as a simple multi-task task.

Then, you can train the GPM-ML model with the training set from all three datasets by:

bash train_gpm_ml_all.sh

After this phase, the first two levels of the GPM-ML model would be more robust and generalized.

Finally, you can try to finetune on each dataset by the unified pretrain model.

bash train_gpm_ml_pascal.sh

Citation:

@inproceedings{he2020grapy,
title={Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing},
author={He, Haoyu and Zhang, Jing and Zhang, Qiming and Tao, Dacheng},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2020}
}

Maintainer:

[email protected]

This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022