(AAAI 2021) Progressive One-shot Human Parsing

Overview

End-to-end One-shot Human Parsing

This is the official repository for our two papers:


Introduction:

In the two papers, we propose a new task named One-shot Human Parsing (OSHP). OSHP requires parsing humans in a query image into an open set of reference classes defined by any single reference example (i.e., a support image) during testing, no matter whether they have been annotated during training (base classes) or not (novel classes). This new task mainly aims to accommodate human parsing into a wider range of applications that seek to parse flexible fashion/clothing classes that are not pre-defined in previous large-scale datasets.

Progressive One-shot Human Parsing (AAAI 2021) applies a progressive training scheme and is separated into three stages.

End-to-end One-shot Human Parsing (journal version) is a one-stage end-to-end training method, which has higher performance and FPS.


Main results:

You can find the well-trained models together with the performance in the following table.

EOPNet ATR-OS, Kway F1 ATR-OS, Kway Fold F2 LIP-OS, Kway F1 LIP-OS, Kway F2 CIHP-OS, Kway F1 CIHP-OS Kway F2
Novel mIoU 31.1 34.6 25.7 30.4 20.5 25.1
Human mIoU 61.9 63.3 43.0 45.7 49.1 45.5
Model Model Coming Soon Model Model Model Model

You can find the well-trained models together with the performance in the following table.

EOPNet ATR-OS, 1way F1 ATR-OS, 1way F2 LIP-OS, 1way F1 LIP-OS, 1way F2 CIHP-OS, 1way F1 CIHP-OS 1way F2
Novel mIoU 53.0 41.4 42.0 46.2 25.4 36.4
Human mIoU 68.2 69.5 57.0 58.0 53.8 55.4
Model Coming Soon

Getting started:

Data preparation:

First, please download ATR, LIP and CIHP dataset from source. Then, use the following commands to link the data into our project folder. Please also remember to download the atr flipped labels and cihp flipped labels.

# ATR dataset
$ ln -s YOUR_ATR_PATH/JPEGImages/* YOUR_PROJECT_ROOT/ATR_OS/trainval_images
$ ln -s YOUR_ATR_PATH/SegmentationClassAug/* YOUR_PROJECT_ROOT/ATR_OS/trainval_classes
$ ln -s YOUR_ATR_PATH/SegmentationClassAug_rev/* YOUR_PROJECT_ROOT/ATR_OS/Category_rev_ids


# LIP dataset
$ ln -s YOUR_LIP_PATH/TrainVal_images/TrainVal_images/train_images/* YOUR_PROJECT_ROOT/LIP_OS/trainval_images
$ ln -s YOUR_LIP_PATH/TrainVal_images/TrainVal_images/val_images/* YOUR_PROJECT_ROOT/LIP_OS/trainval_images
$ ln -s YOUR_LIP_PATH/TrainVal_parsing_annotations/TrainVal_parsing_annotations/train_segmentations/* YOUR_PROJECT_ROOT/LIP_OS/trainval_classes
$ ln -s YOUR_LIP_PATH/TrainVal_parsing_annotations/TrainVal_parsing_annotations/val_segmentations/* YOUR_PROJECT_ROOT/LIP_OS/trainval_classes
$ ln -s YOUR_LIP_PATH/Train_parsing_reversed_labels/TrainVal_parsing_annotations/* YOUR_PROJECT_ROOT/LIP_OS/Category_rev_ids
$ ln -s YOUR_LIP_PATH/val_segmentations_reversed/* YOUR_PROJECT_ROOT/LIP_OS/Category_rev_ids


# CIHP dataset
$ ln -s YOUR_CIHP_PATH/Training/Images/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_images
$ ln -s YOUR_CIHP_PATH/Validation/Images/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_images
$ ln -s YOUR_CIHP_PATH/Training/Category_ids/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_classes
$ ln -s YOUR_CIHP_PATH/Validation/Category_ids/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_classes
$ ln -s YOUR_CIHP_PATH/Category_rev_ids/* YOUR_PROJECT_ROOT/CIHP_OS/Category_rev_ids

Please also download our generated support .pkl files from source, which contains each class's image IDs. You can also generate support files on your own by controlling dtrain_dtest_split in oshp_loader.py, however, the training and validation list might be different from our paper.

Finally, your data folder should look like this:

${PROJECT ROOT}
|-- data
|   |--datasets
|       |-- ATR_OS
|       |   |-- list
|       |   |   |-- meta_train_id.txt
|       |   |   `-- meta_test_id.txt
|       |   |-- support
|       |   |   |-- meta_train_atr_supports.pkl
|       |   |   `-- meta_test_atr_supports.pkl
|       |   |-- trainval_images
|       |   |   |-- 997-1.jpg
|       |   |   |-- 997-2.jpg
|       |   |   `-- ...
|       |   |-- trainval_classes
|       |   |   |-- 997-1.png
|       |   |   |-- 997-2.png
|       |   |   `-- ... 
|       |   `-- Category_rev_ids
|       |       |-- 997-1.png
|       |       |-- 997-2.png
|       |       `-- ... 
|       |-- LIP_OS
|       |   |-- list
|       |   |   |-- meta_train_id.txt
|       |   |   |-- meta_test_id.txt
|       |   |-- support
|       |   |   |-- meta_train_lip_supports.pkl
|       |   |   `-- meta_test_lip_supports.pkl
|       |   |-- trainval_images
|       |   |   |-- ...
|       |   |-- trainval_classes
|       |   |   |-- ... 
|       |   `-- Category_rev_ids
|       |       |-- ... 
|       `-- CIHP_OS
|           |-- list
|           |   |-- meta_train_id.txt
|           |   |-- meta_test_id.txt
|           |-- support
|           |   |-- meta_train_cihp_supports.pkl
|           |   `-- meta_test_cihp_supports.pkl
|           |-- trainval_images
|           |   |-- ...
|           |-- trainval_classes
|           |   |-- ... 
|           `-- Category_rev_ids
|               |-- ... 

Finally, please download the DeepLab V3+ pretrained model (pretrained on COCO dataset) from source and put it into the data folder:

${PROJECT ROOT}
|-- data
|   |--pretrained_model
|       |--deeplab_v3plus_v3.pth

Installation:

Please make sure your current environment has Python >= 3.7.0 and pytorch >= 1.1.0. The pytorch can be downloaded from source.

Then, clone the repository and install the dependencies from the following commands:

git clone https://github.com/Charleshhy/One-shot-Human-Parsing.git
cd One-shot-Human-Parsing
pip install -r requirements.txt

Training:

To train EOPNet in End-to-end One-shot Human Parsing (journal version), run:

# OSHP kway on ATR-OS fold 1
bash scripts/atr_eop_kwf1.sh

Validation:

To evaluate EOPNet in End-to-end One-shot Human Parsing (journal version), run:

# OSHP kway on ATR-OS fold 1
bash scripts/evaluate_atr_eop_kwf1.sh

TODO:

  • Release training/validation code for POPNet
  • Release well-trained EOPNet 1-way models

Citation:

If you find our papers or this repository useful, please consider cite our papers:

@inproceedings{he2021progressive,
title={Progressive One-shot Human Parsing},
author={He, Haoyu and Zhang, Jing and Thuraisingham, Bhavani and Tao, Dacheng},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2021}
}

@article{he2021end,
title={End-to-end One-shot Human Parsing},
author={He, Haoyu and Zhang, Jing and Zhuang, Bohan and Cai, Jianfei and Tao, Dacheng},
journal={arXiv preprint arXiv:2105.01241},
year={2021}
}

Acknowledgement:

This repository is mainly developed basing on Graphonomy and Grapy-ML.

VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022