A Multi-modal Model Chinese Spell Checker Released on ACL2021.

Related tags

Deep LearningReaLiSe
Overview

ReaLiSe

ReaLiSe is a multi-modal Chinese spell checking model.

This the office code for the paper Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking.

The paper has been accepted in ACL Findings 2021.

Environment

  • Python: 3.6
  • Cuda: 10.0
  • Packages: pip install -r requirements.txt

Data

Raw Data

SIGHAN Bake-off 2013: http://ir.itc.ntnu.edu.tw/lre/sighan7csc.html
SIGHAN Bake-off 2014: http://ir.itc.ntnu.edu.tw/lre/clp14csc.html
SIGHAN Bake-off 2015: http://ir.itc.ntnu.edu.tw/lre/sighan8csc.html
Wang271K: https://github.com/wdimmy/Automatic-Corpus-Generation

Data Processing

The code and cleaned data are in the data_process directory.

You can also directly download the processed data from this and put them in the data directory. The data directory would look like this:

data
|- trainall.times2.pkl
|- test.sighan15.pkl
|- test.sighan15.lbl.tsv
|- test.sighan14.pkl
|- test.sighan14.lbl.tsv
|- test.sighan13.pkl
|- test.sighan13.lbl.tsv

Pretrain

  • BERT: chinese-roberta-wwm-ext

    Huggingface hfl/chinese-roberta-wwm-ext: https://huggingface.co/hfl/chinese-roberta-wwm-ext
    Local: /data/dobby_ceph_ir/neutrali/pretrained_models/roberta-base-ch-for-csc/

  • Phonetic Encoder: pretrain_pho.sh

  • Graphic Encoder: pretrain_res.sh

  • Merge: merge.py

You can also directly download the pretrained and merged BERT, Phonetic Encoder, and Graphic Encoder from this, and put them in the pretrained directory:

pretrained
|- pytorch_model.bin
|- vocab.txt
|- config.json

Train

After preparing the data and pretrained model, you can train ReaLiSe by executing the train.sh script. Note that you should set up the PRETRAINED_DIR, DATE_DIR, and OUTPUT_DIR in it.

sh train.sh

Test

Test ReaLiSe using the test.sh script. You should set up the DATE_DIR, CKPT_DIR, and OUTPUT_DIR in it. CKPT_DIR is the OUTPUT_DIR of the training process.

sh test.sh

Well-trained Model

You can also download well-trained model from this direct using. The performance scores of RealiSe and some baseline models on the SIGHAN13, SIGHAN14, SIGHAN15 test set are here:

Methods

Metrics

  • "D" means "Detection Level", "C" means "Correction Level".
  • "A", "P", "R", "F" means "Accuracy", "Precision", "Recall", and "F1" respectively.

SIGHAN15

Method D-A D-P D-R D-F C-A C-P C-R C-F
FASpell 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6
Soft-Masked BERT 80.9 73.7 73.2 73.5 77.4 66.7 66.2 66.4
SpellGCN - 74.8 80.7 77.7 - 72.1 77.7 75.9
BERT 82.4 74.2 78.0 76.1 81.0 71.6 75.3 73.4
ReaLiSe 84.7 77.3 81.3 79.3 84.0 75.9 79.9 77.8

SIGHAN14

Method D-A D-P D-R D-F C-A C-P C-R C-F
Pointer Network - 63.2 82.5 71.6 - 79.3 68.9 73.7
SpellGCN - 65.1 69.5 67.2 - 63.1 67.2 65.3
BERT 75.7 64.5 68.6 66.5 74.6 62.4 66.3 64.3
ReaLiSe 78.4 67.8 71.5 69.6 77.7 66.3 70.0 68.1

SIGHAN13

Method D-A D-P D-R D-F C-A C-P C-R C-F
FASpell 63.1 76.2 63.2 69.1 60.5 73.1 60.5 66.2
SpellGCN 78.8 85.7 78.8 82.1 77.8 84.6 77.8 81.0
BERT 77.0 85.0 77.0 80.8 77.4 83.0 75.2 78.9
ReaLiSe 82.7 88.6 82.5 85.4 81.4 87.2 81.2 84.1

Citation

@misc{xu2021read,
      title={Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking}, 
      author={Heng-Da Xu and Zhongli Li and Qingyu Zhou and Chao Li and Zizhen Wang and Yunbo Cao and Heyan Huang and Xian-Ling Mao},
      year={2021},
      eprint={2105.12306},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
DaDa
A student majoring in Computer Science in BIT.
DaDa
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021