Customizing Visual Styles in Plotly

Overview

Customizing Visual Styles in Plotly

Code for a workshop originally developed for an Unconference session during the Outlier Conference hosted by Data Visualization Society.

To jump right in:

Fork this repository, or download the Jupyter Notebook file Styling_Plotly_Themes_Templates.ipynb.

Ever have that feeling that a lot of data viz you see screams the tool it was made in? Using the Plotly Open Source Python Graphing Library, we will take a look under the hood of:

  • the style themes available,
  • understand the visual elements like figure and chart backgrounds, and
  • build our own default theme script inspired by 1980's computers.

This informal workshop is for a seasoned Pythonista wanting to add to your design toolbox or a newbie curious about custom interfaces beyond the usual BI tools (listen or follow along).

You can also check out all of Plotly's open source graphing libraries, including R, JavaScript, and more here.

Quick Start Prep

(most of this occurs before the workshop to follow along live...)

We're not going to spend too much time here, but if you're just starting out in Python, and want to get your hands dirty, here's a few building blocks useful to get the most from the workshop:

  1. Python ...All you really need is a Python code interpreter installed as a foundation.

    1. Start from the source, Python Software Foundation's helpful steps and downloads (yep, the be all end all source).
      1. Many computers come with a version pre-installed, a bit old, but if you don't want to touch or download anything, it may get you acquainted, at least. (to check in command line or terminal, run python --version)
    2. Or Python comes with an Anaconda installation (bigger topic than this workshop, but if you're in it for the long haul using Python consider e.g. the Individual Edition or a miniconda).

  2. A virtual environment (optional, but do this next if you're doing it.)

    1. Skip this step if the sound of it or # steps has you scared away already! Don't go, stay!
    2. It's recommended, but not necessary, to make and work in an isolated virtual environment for any Python project like this one, to help manage work requiring different versions of things.
      1. Options to manage this:
        1. I find virtualenv a sure bet,
          1. (e.g. On Mac Terminal (Zsh), from my project root folder, I ran virtualenv plotlystyle_env to make it; to activate it, I'll run source plotlystyle_env/bin/activate) _pip install virtualenv_if necessary first.
          2. I'll refer you to the docs for Windows.
        2. the simplified venv built into Python version 3.3+,
        3. Conda which I feel is cleanest with its centralized file structure, but fussy at times like an angry schoolchild, and
        4. those are the big ones.

  3. Jupyter Notebook (strongly recommended, we'll spend the workshop in the .ipynb Notebook file)

    1. Notebooks run directly in your web browser, so you need: Chrome, Safari, or Firefox (up to date Opera and Edge maybe works)

    2. If you installed an Anaconda distribution in step 1, congratulations, Jupyter Notebook is included! Read up on running the Notebook where we'll pick up!

    3. You can alternately install Jupyter Notebook with the pip package manager.

    4. If you're working in a virtual environment (step 2 above), also install the IPython kernel.

      1. Otherwise, this Jupyter Notebooks does have this automatically for your system Python interpreter.
      2. This basically supports more quick, interactive, code which makes Notebooks great for learning in chunks, and exploring without running a whole script.
  4. Kiss your brain!

Who's tired of hyperlinks and docs already?! You promised fun!

General Disclaimer

This work is open source, like Plotly Open Source Graphing Libraries, so try it, use it and spread the love by teaching someone else!
To keep up with what others are working on, join the Plotly Community Forum. Made with 💌 for the Python and data viz ecosystems under the limited liability company Data, Design & Daughters LLC doing business as Data Design Dimension by Kathryn Hurchla.

Owner
Data Design Dimension
Impact. Visualize. Grow. Full lifecycle data studio to optimize, build flows, and gain traction while you go.
Data Design Dimension
Focus on Algorithm Design, Not on Data Wrangling

The dataTap Python library is the primary interface for using dataTap's rich data management tools. Create datasets, stream annotations, and analyze model performance all with one library.

Zensors 37 Nov 25, 2022
Generate the report for OCULTest.

Sample report generated in this function Usage example from utils.gen_report import generate_report if __name__ == '__main__': # def generate_rep

Philip Guo 1 Mar 10, 2022
Set of matplotlib operations that are not trivial

Matplotlib Snippets This repository contains a set of matplotlib operations that are not trivial. Histograms Histogram with bins adapted to log scale

Raphael Meudec 1 Nov 15, 2021
Lightspin AWS IAM Vulnerability Scanner

Red-Shadow Lightspin AWS IAM Vulnerability Scanner Description Scan your AWS IAM Configuration for shadow admins in AWS IAM based on misconfigured den

Lightspin 90 Dec 14, 2022
OpenStats is a library built on top of streamlit that extracts data from the Github API and shows the main KPIs

Open Stats Discover and share the KPIs of your OpenSource project. OpenStats is a library built on top of streamlit that extracts data from the Github

Pere Miquel Brull 4 Apr 03, 2022
Import, visualize, and analyze SpiderFoot OSINT data in Neo4j, a graph database

SpiderFoot Neo4j Tools Import, visualize, and analyze SpiderFoot OSINT data in Neo4j, a graph database Step 1: Installation NOTE: This installs the sf

Black Lantern Security 42 Dec 26, 2022
This is my favourite function - the Rastrigin function.

This is my favourite function - the Rastrigin function. What sparked my curiosity and interest in the function was its complexity in terms of many local optimum points, which makes it particularly in

1 Dec 27, 2021
Python implementation of the Density Line Chart by Moritz & Fisher.

PyDLC - Density Line Charts with Python Python implementation of the Density Line Chart (Moritz & Fisher, 2018) to visualize large collections of time

Charles L. Bérubé 10 Jan 06, 2023
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Dec 26, 2022
Keir&'s Visualizing Data on Life Expectancy

Keir's Visualizing Data on Life Expectancy Below is information on life expectancy in the United States from 1900-2017. You will also find information

9 Jun 06, 2022
plotly scatterplots which show molecule images on hover!

molplotly Plotly scatterplots which show molecule images on hovering over the datapoints! Required packages: pandas rdkit jupyter_dash ➡️ See example.

150 Dec 28, 2022
Draw datasets from within Jupyter.

drawdata This small python app allows you to draw a dataset in a jupyter notebook. This should be very useful when teaching machine learning algorithm

vincent d warmerdam 505 Nov 27, 2022
Gesture controlled media player

Media Player Gesture Control Gesture controller for media player with MediaPipe, VLC and OpenCV. Contents About Setup About A tool for using gestures

Atharva Joshi 2 Dec 22, 2021
Example Code Notebooks for Data Visualization in Python

This repository contains sample code scripts for creating awesome data visualizations from scratch using different python libraries (such as matplotli

Javed Ali 27 Jan 04, 2023
Leyna's Visualizing Data With Python

Leyna's Visualizing Data Below is information on the number of bilingual students in three school districts in Massachusetts. You will also find infor

11 Oct 28, 2021
Visualize tensors in a plain Python REPL using Sparklines

Visualize tensors in a plain Python REPL using Sparklines

Shawn Presser 43 Sep 03, 2022
Type-safe YAML parser and validator.

StrictYAML StrictYAML is a type-safe YAML parser that parses and validates a restricted subset of the YAML specification. Priorities: Beautiful API Re

Colm O'Connor 1.2k Jan 04, 2023
Moscow DEG 2021 elections plots

Построение графиков на основе публичных данных о ДЭГ в Москве в 2021г. Описание Скрипты в данном репозитории позволяют собственноручно построить графи

9 Jul 15, 2022
Visualize the training curve from the *.csv file (tensorboard format).

Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c

Luckky 7 Feb 23, 2022
Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from time series data.

ts2vg: Time series to visibility graphs The Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from t

Carlos Bergillos 26 Dec 17, 2022