Analyses of the individual electric field magnitudes with Roast.

Overview

Aloi Davide - PhD Student (UoB)

Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal Modelling (DCM) results.

The goal of these analyses is to establish whether there is a relationship between single-subject electric field (E-field) magnitudes generated with the ROAST pipeline (Huang et al., 2019) and changes in effective connectivity within the motor network, derived using DCM and parametric empirical bayes (PEB).

The two analyses are:

  1. Correlation analysis between E-field magnitude - medians and max values - (or the current density?) in the motor cortex (M1) and Thalamus (Th) with self- / between-connectivities (M1 and Th only?) as derived from the DCM. e.g. Indahlastari et al. (2021). At the moment I am correlating e-field measures only with DCM measures derived from the contrast pre vs post Day-1 anodal only. However, I should also correlate those e-field measures with DCM measures derived from the contrast pre vs post Day-1 sham. I expect to find correlations between e-field measures and DCM measures for the anodal condition but not for sham.
  2. Pattern-recognition analysis using support vector machine (SVM) learning algorithm on MRI-derived tDCS current models to provide classification of tDCS treatment response (as reflected by increased M1-TH or TH-M1 connectivity or whatever other measure we decide). e.g. Albizu et al. (2020). The question here is: can we classify people who had an increase in thalamo-cortical connectivity using features from the MRI-current models?

The two analyses require similar preprocessing steps. Here's the list of the steps I've done and the respective scripts.

WP2A: I start from a dataset containing 22 folders (one per participant), each containing a T1 and a T2 scan (except for subject 16 who has only a T1).

  1. Renaming of anatomical scans: this renames the anatomical scans of each participant (i.e. sub-01_T1.nii etc).
  2. ROAST simulations: this script runs the ROAST simulations. In brief, ROAST outputs the following scans for each subject, while also using SPM routines for tissue segmentation: Voltage ("subjName_simulationTag_v.nii", unit in mV), E-field ("subjName_simulationTag_e.nii", unit in V/m) and E-field magnitude ("subjName_simulationTag_emag.nii", unit in V/m). The settings I have used for the simulation are: (t1, {'C3',1.0,'Fp2',-1.0},'T2', t2,'electype', 'pad', 'elecsize', [50 50 3], 'capType', '1020').
  3. Post ROAST preprocessing: ROAST outputs are in the ROAST model space. This script moves the results back to the MRI space, coregisters and normalises the electric field maps generated by ROAST. The script also normalise the T1 scan and all the masks.
  4. Ep values extraction from PEB result (Day-1 only): this script, starting from this .mat structure containing 66 PEBs (1 per participant / polarity), extracts the Ep values for each participant. The resulting file contains 66 matrices (participant 1 anodal, cathodal and sham, participant 2 ... 22).
  5. Estimation of posterior probability associated to each PEB extracted above. The script runs bayesian model averages for each PEB using the DCM function spm_dcm_peb_bmc. Results are saved in this .mat structure and used later on in the analyses to exclude connections with a posterior probability lower than 75%.
  6. WP2a e-magnitude measures estimation and correlation analysis. Steps:
    1. Load MNI template and M1/Th ROIs.
    2. Load .mat structure with Ep values and .mat structure with Pp values (Nb. Pp values are not used anymore);
    3. For each subject:
      1. Load normalised scan containing E-field magnitude (wsub-T1_emag.nii), normalised CSF, white and grey matter maps (wc1-2-3sub*.nii).
      2. Save DCM values related to the connections M1-M1, Th-Th, M1->Th and Th-> M1;
      3. Smooth E-field magnitude map using FWHM (4mm kernel);
      4. Mask E-field magnitude map with MNI template to exclude values outside the brain (useless if I then mask with CSF, wm and gm maps or with the M1/Th ROIs);
      5. Mask E-field magnitude map with M1 and Th ROIs and estimate means, medians and max electric-field values within the two ROIs;
      6. Save electric-field magnitude derived measures;
      7. Plot smoothed E-field magnitude map;
      8. Run 16 correlations: 4 DCM measures and 4 E-field measures (medians and max values).
      9. Plot correlations.

Questions:

  1. Electric field magnitudes or current densities?
  2. If so, how to deal with probabilistic masks?
  3. Should I threshold WM masks and apply binary erosion to remove the overlap between WM and GM?
  4. How to deal with Ep values which corresponding Pp is lower than our threshold (75%?)
  5. Should I mask out CSF tissue? Should I use a binary map containing only WM and GM?
  6. Hypotheses? Ideas?

Plots: Sticky note mind map - Sticky note mind map

References:

  1. Huang, Y., Datta, A., Bikson, M., & Parra, L. C. (2019). Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated open-source pipeline. Journal of Neural Engineering, 16(5), 056006. https://doi.org/10.1088/1741-2552/ab208d
  2. Indahlastari, A., Albizu, A., Kraft, J. N., O’Shea, A., Nissim, N. R., Dunn, A. L., Carballo, D., Gordon, M. P., Taank, S., Kahn, A. T., Hernandez, C., Zucker, W. M., & Woods, A. J. (2021). Individualized tDCS modeling predicts functional connectivity changes within the working memory network in older adults. Brain Stimulation, 14(5), 1205–1215. https://doi.org/10.1016/j.brs.2021.08.003
  3. Albizu, A., Fang, R., Indahlastari, A., O’Shea, A., Stolte, S. E., See, K. B., Boutzoukas, E. M., Kraft, J. N., Nissim, N. R., & Woods, A. J. (2020). Machine learning and individual variability in electric field characteristics predict tDCS treatment response. Brain Stimulation, 13(6), 1753–1764. https://doi.org/10.1016/j.brs.2020.10.001
Owner
Davide Aloi
Doctoral Researcher at the University of Birmingham, UK. Centre for Human Brain Health. Investigating Disorders of Consciousness with fMRI and tDCS.
Davide Aloi
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023