Sie_banxico - A python class for the Economic Information System (SIE) API of Banco de México

Overview

sie_banxico

PyPi Version

A python class for the Economic Information System (SIE) API of Banco de México.

Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish

Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here

Pypi Installation

pip install sie_banxico

SIEBanxico Class Instance

Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data

 >>> from api_banxico import SIEBanxico
 >>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')

Class documentation and attributes

>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'

Methods for modify the arguments of the object

set_token: Change the current query token

>>> api.set_token(token = new_token)

set_id_series: Allows to change the series to query

>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'

append_id_series: Allows to update the series to query

>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'

GET Request Methods

>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']

get_metadata: Allows to consult metadata of the series

    Allows to consult metadata of the series.
    Returns:
        dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}

get_lastdata: Returns the most recent published data

Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format

>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}

get_timeseries: Allows to consult time series data

    Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
    Args:
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
    Returns:
        dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
    'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
    'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
     {'fecha': '01/01/2002', 'dato': '13.99'},
     ...
     {'fecha': '01/11/2021', 'dato': '13.38'}],
     'incrementos': 'PorcAnual'}]}}

get_timeseries_range: Returns the data for the period defined

    Returns the data of the requested series, for the defined period.
    Args:
        init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
        end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.     
    Returns:
        dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
    'titulo': 'Monetary Aggregates M1',
    'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
     {'fecha': '01/02/2001', 'dato': '517,186,605.97'},
     ...
     {'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}

Pandas integration for data manipulation (and further analysis)

All the request methods returns a response in json format that can be used with other Python libraries.

The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:

data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')

# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
 ...
 {'fecha': '01/04/2004', 'dato': '799,774,807.43'}]

# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
        fecha            dato
0  01/01/2001  524,836,129.99
1  01/02/2001  517,186,605.97
2  01/03/2001  509,701,873.04
3  01/04/2001  511,952,430.01
4  01/05/2001  514,845,459.96

Another useful pandas function to transform json formats into a dataframe is 'json_normalize':

df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
        fecha            dato   idSerie                  titulo
0  01/01/2001  524,836,129.99  SF311408  Monetary Aggregates M1
1  01/02/2001  517,186,605.97  SF311408  Monetary Aggregates M1
2  01/03/2001  509,701,873.04  SF311408  Monetary Aggregates M1
3  01/04/2001  511,952,430.01  SF311408  Monetary Aggregates M1
4  01/05/2001  514,845,459.96  SF311408  Monetary Aggregates M1
df.tail()
         fecha              dato   idSerie                  titulo
75  01/12/2003  2,331,594,974.69  SF311418  Monetary Aggregates M2
76  01/01/2004  2,339,289,328.74  SF311418  Monetary Aggregates M2
77  01/02/2004  2,285,732,239.36  SF311418  Monetary Aggregates M2
78  01/03/2004  2,312,217,167.10  SF311418  Monetary Aggregates M2
79  01/04/2004  2,306,755,672.89  SF311418  Monetary Aggregates M2

Licence

The MIT License (MIT)

By

Dillan Aguirre Sedeño ([email protected])

Owner
Dillan
Dillan
:lock: Python 2.7/3.X client for HashiCorp Vault

hvac HashiCorp Vault API client for Python 3.x Tested against the latest release, HEAD ref, and 3 previous minor versions (counting back from the late

hvac 1k Dec 29, 2022
Recommended AWS CDK project structure for Python applications

Recommended AWS CDK project structure for Python applications The project implements a user management backend component that uses Amazon API Gateway,

AWS Samples 110 Jan 06, 2023
Build better AWS infrastructure

Sceptre About Sceptre is a tool to drive AWS CloudFormation. It automates the mundane, repetitive and error-prone tasks, enabling you to concentrate o

sceptre 1.4k Jan 04, 2023
Discord E-Store Bot

A delivery bot for Discord, works like Amazon where real users can pack & deliver orders in different servers!

Amit Pathak 2 Jan 28, 2022
A free and open-source discord webhook spammer.

Discord-Webhook-Spammer A free and open-source discord webhook spammer. Usage Depending on your python installation your commands may vary. Below are

3 Sep 08, 2021
Spotify Web API client for Python 3

Welcome to the GitHub repository of Tekore! We provide a client for the Spotify Web API for Python, complete with all available endpoints and authenti

Felix Hildén 186 Dec 22, 2022
🔍 📊 Look up information about anime, manga and much more directly in Discord!

AniSearch The source code of the AniSearch Discord Bot. Contribute You have an idea or found a bug? Open a new issue with detailed explanation. You wa

私はレオンです 19 Dec 07, 2022
This is Pdisk Upload Bot made using Python with Pyrogram Framework. Its capable of uploading direct download link with thumbnail or without thumbnail & with Title Support.

Pdisk-Upload-Bot Introduction This Is PDisk Upload Bot Used To Upload Direct Link To Pdisk With Thumb Support Deploy Heroku Deploy Local Deploy pip in

HEIMAN PICTURES 32 Oct 21, 2022
My personal discord bot using discord.py

Rara-chan My personal discord bot that I use for stuff that I find interesting. Features Responds to certain messages ChatBot capabilities NHentai scr

Mikask 3 Nov 06, 2022
A telegram bot to download mega.nz links. (made with pyrogram).

Mega Link Downloader Bot This is a telegram bot to download mega.nz links and return them as files/videos - Made by a 100% noob! (When I mean noob I r

171 Dec 27, 2022
Transcript-Extractor-Bot - Yet another Telegram Voice Recognition bot but using vosk and supports 20+ languages

transcript extractor Yet another Telegram Voice Recognition bot but using vosk a

6 Oct 21, 2022
Telegram bot untuk mencari jawaban dibrainly, support inline juga

Brainly-Telebot Bot Untuk Mencari Jawaban Dibrainly Jika ingin clone. Boleh kok Dibuat dengan python menggunakan MTproto Library. Yaitu Pyrogram Bot y

... 7 Mar 17, 2022
A discord token grabber made in Python 3

Discord Token Grabber A Discord token grabber written in Python 3. This version of the grabber only supports Windows. Features Transfers via Discord w

Mega145 4 Aug 04, 2022
A Telegram Filter Bot, Support Unlimited Filter. Also, The Bot can auto-filter telegram File | video

A Telegram Filter Bot, Support Unlimited Filter. Also, The Bot can auto-filter telegram File | video

Hash Minner 3 Nov 27, 2021
Tools for use in DeFi. Impermanent Loss calculations, staking and farming strategies, coingecko and pancakeswap API queries, liquidity pools and more

DeFi open source tools Get Started Instalation General Tools Impermanent Loss, simple calculation Compare Buy & Hold with Staking and Farming Complete

Juan Pablo Pisano 467 Jan 08, 2023
A chatbot on Telegram using technologies of cloud computing.

Chatbot This project is about a chatbot on Telegram to study the cloud computing. You can refer to the project of chatbot-deploy which is conveinent f

Jeffery 4 Apr 24, 2022
A Simple Telegram Bot To Download And Upload Files

AquaDLBot ➠ I Can Download And Upload files To Telegram DEMO Copyright (C) 2020-2026 by [ema

Asia Argento 8 Feb 15, 2022
universal messaging & notifications api

Pronounced "boat-shahft" What is botschaft? Botschaft is unified messaging & notifications appliance. Want to text yourself when a long-running task c

Tyler M. Kontra 25 Aug 16, 2022
A discord bot for checking what linked profiles a user has to their Ubisoft account

ubisoft_discord_profiles A Discord bot for checking what linked profiles a user has to their Ubisoft account. This can be setup using an enviromental

Andrei 1 Dec 17, 2021
🤖 Fast and simple bot to transform links from Amazon into a nice post with your referral link in Telegram 🛒

AmazonBot 🤖 Fast and simple bot to transform links from Amazon into a nice post with your referral link in Telegram 🛒 Prerequisites You need Python

Alternative Profit 3 Dec 25, 2022