Parallel t-SNE implementation with Python and Torch wrappers.

Overview

Multicore t-SNE Build Status

This is a multicore modification of Barnes-Hut t-SNE by L. Van der Maaten with python and Torch CFFI-based wrappers. This code also works faster than sklearn.TSNE on 1 core.

What to expect

Barnes-Hut t-SNE is done in two steps.

  • First step: an efficient data structure for nearest neighbours search is built and used to compute probabilities. This can be done in parallel for each point in the dataset, this is why we can expect a good speed-up by using more cores.

  • Second step: the embedding is optimized using gradient descent. This part is essentially consecutive so we can only optimize within iteration. In fact some parts can be parallelized effectively, but not all of them a parallelized for now. That is why second step speed-up will not be that significant as first step sepeed-up but there is still room for improvement.

So when can you benefit from parallelization? It is almost true, that the second step computation time is constant of D and depends mostly on N. The first part's time depends on D a lot, so for small D time(Step 1) << time(Step 2), for large D time(Step 1) >> time(Step 2). As we are only good at parallelizing step 1 we will benefit most when D is large enough (MNIST's D = 784 is large, D = 10 even for N=1000000 is not so much). I wrote multicore modification originally for Springleaf competition, where my data table was about 300000 x 3000 and only several days left till the end of the competition so any speed-up was handy.

Benchmark

1 core

Interestingly, that this code beats other implementations. We compare to sklearn (Barnes-Hut of course), L. Van der Maaten's bhtsne, py_bh_tsne repo (cython wrapper for bhtsne with QuadTree). perplexity = 30, theta=0.5 for every run. In fact py_bh_tsne repo works at the same speed as this code when using more optimization flags for compiler.

This is a benchmark for 70000x784 MNIST data:

Method Step 1 (sec) Step 2 (sec)
MulticoreTSNE(n_jobs=1) 912 350
bhtsne 4257 1233
py_bh_tsne 1232 367
sklearn(0.18) ~5400 ~20920

I did my best to find what is wrong with sklearn numbers, but it is the best benchmark I could do (you can find test script in python/tests folder).

Multicore

This table shows a relative to 1 core speed-up when using n cores.

n_jobs Step 1 Step 2
1 1x 1x
2 1.54x 1.05x
4 2.6x 1.2x
8 5.6x 1.65x

How to use

Python and torch wrappers are available.

Python

Install

Directly from pypi

pip install MulticoreTSNE

From source

Make sure cmake is installed on your system, and you will also need a sensible C++ compiler, such as gcc or llvm-clang. On macOS, you can get both via homebrew.

To install the package, please do:

git clone https://github.com/DmitryUlyanov/Multicore-TSNE.git
cd Multicore-TSNE/
pip install .

Tested with both Python 2.7 and 3.6 (conda) and Ubuntu 14.04.

Run

You can use it as a near drop-in replacement for sklearn.manifold.TSNE.

from MulticoreTSNE import MulticoreTSNE as TSNE

tsne = TSNE(n_jobs=4)
Y = tsne.fit_transform(X)

Please refer to sklearn TSNE manual for parameters explanation.

This implementation n_components=2, which is the most common case (use Barnes-Hut t-SNE or sklearn otherwise). Also note that some parameters are there just for the sake of compatibility with sklearn and are otherwise ignored. See MulticoreTSNE class docstring for more info.

MNIST example

from sklearn.datasets import load_digits
from MulticoreTSNE import MulticoreTSNE as TSNE
from matplotlib import pyplot as plt

digits = load_digits()
embeddings = TSNE(n_jobs=4).fit_transform(digits.data)
vis_x = embeddings[:, 0]
vis_y = embeddings[:, 1]
plt.scatter(vis_x, vis_y, c=digits.target, cmap=plt.cm.get_cmap("jet", 10), marker='.')
plt.colorbar(ticks=range(10))
plt.clim(-0.5, 9.5)
plt.show()

Test

You can test it on MNIST dataset with the following command:

python MulticoreTSNE/examples/test.py <n_jobs>

Note on jupyter use

To make the computation log visible in jupyter please install wurlitzer (pip install wurlitzer) and execute this line in any cell beforehand:

%load_ext wurlitzer

Memory leakages are possible if you interrupt the process. Should be OK if you let it run until the end.

Torch

To install execute the following command from repository folder:

luarocks make torch/tsne-1.0-0.rockspec

or

luarocks install https://raw.githubusercontent.com/DmitryUlyanov/Multicore-TSNE/master/torch/tsne-1.0-0.rockspec

You can run t-SNE like that:

tsne = require 'tsne'

Y = tsne(X, n_components, perplexity, n_iter, angle, n_jobs)

torch.DoubleTensor type only supported for now.

License

Inherited from original repo's license.

Future work

  • Allow other types than double
  • Improve step 2 performance (possible)

Citation

Please cite this repository if it was useful for your research:

@misc{Ulyanov2016,
  author = {Ulyanov, Dmitry},
  title = {Multicore-TSNE},
  year = {2016},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/DmitryUlyanov/Multicore-TSNE}},
}

Of course, do not forget to cite L. Van der Maaten's paper

Owner
Dmitry Ulyanov
Co-Founder at in3D, Phd @ Skoltech
Dmitry Ulyanov
Write python locally, execute SQL in your data warehouse

RasgoQL Write python locally, execute SQL in your data warehouse ≪ Read the Docs · Join Our Slack » RasgoQL is a Python package that enables you to ea

Rasgo 265 Nov 21, 2022
LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

MLH Fellowship 7 Oct 05, 2022
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow with breakpoints + real-time visualization of the data flowing through the computational graph

TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow (Google's Deep Learning framework) with breakpoints + real-time visualization of the data flowing through the comput

Eric Jang 1.4k Dec 15, 2022
Schema validation for Xarray objects

xarray-schema Schema validation for Xarray installation This package is in the early stages of development. Install it from source: pip install git+gi

carbonplan 22 Oct 31, 2022
阴阳师后台全平台(使用网易 MuMu 模拟器)辅助。支持御魂,觉醒,御灵,结界突破,秘闻副本,地域鬼王。

阴阳师后台全平台辅助 Python 版本:Python 3.8.3 模拟器:网易 MuMu | 雷电模拟器 模拟器分辨率:1024*576 显卡渲染模式:兼容(OpenGL) 兼容 Windows 系统和 MacOS 系统 思路: 利用 adb 截图后,使用 opencv 找图找色,模拟点击。使用

简讯 27 Jul 09, 2022
Visualize and compare datasets, target values and associations, with one line of code.

In-depth EDA (target analysis, comparison, feature analysis, correlation) in two lines of code! Sweetviz is an open-source Python library that generat

Francois Bertrand 2.3k Jan 05, 2023
Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Aravind Kumar G 2 Nov 17, 2021
YOPO is an interactive dashboard which generates various standard plots.

YOPO is an interactive dashboard which generates various standard plots.you can create various graphs and charts with a click of a button. This tool uses Dash and Flask in backend.

ADARSH C 38 Dec 20, 2022
nvitop, an interactive NVIDIA-GPU process viewer, the one-stop solution for GPU process management

An interactive NVIDIA-GPU process viewer, the one-stop solution for GPU process management.

Xuehai Pan 1.3k Jan 02, 2023
Plot toolbox based on Matplotlib, simple and elegant.

Elegant-Plot Plot toolbox based on Matplotlib, simple and elegant. 绘制效果 绘制过程 数据准备 每种图标类型的目录下有data.csv文件,依据样例数据填入自己的数据。

3 Jul 15, 2022
Schema validation just got Pythonic

Schema validation just got Pythonic schema is a library for validating Python data structures, such as those obtained from config-files, forms, extern

Vladimir Keleshev 2.7k Jan 06, 2023
Extract and visualize information from Gurobi log files

GRBlogtools Extract information from Gurobi log files and generate pandas DataFrames or Excel worksheets for further processing. Also includes a wrapp

Gurobi Optimization 56 Nov 17, 2022
Productivity Tools for Plotly + Pandas

Cufflinks This library binds the power of plotly with the flexibility of pandas for easy plotting. This library is available on https://github.com/san

Jorge Santos 2.7k Dec 30, 2022
Tools for writing, submitting, debugging, and monitoring Storm topologies in pure Python

Petrel Tools for writing, submitting, debugging, and monitoring Storm topologies in pure Python. NOTE: The base Storm package provides storm.py, which

AirSage 247 Dec 18, 2021
HM02: Visualizing Interesting Datasets

HM02: Visualizing Interesting Datasets This is a homework assignment for CSCI 40 class at Claremont McKenna College. Go to the project page to learn m

Qiaoling Chen 11 Oct 26, 2021
clock_plot provides a simple way to visualize timeseries data, mapping 24 hours onto the 360 degrees of a polar plot

clock_plot clock_plot provides a simple way to visualize timeseries data mapping 24 hours onto the 360 degrees of a polar plot. For usage, please see

12 Aug 24, 2022
Friday Night Funkin - converts a chart from 4/4 time to 6/8 time, or from regular to swing tempo.

Chart to swing converter As seen in https://twitter.com/i_winxd/status/1462220493558366214 A program written in python that converts a chart from 4/4

5 Dec 23, 2022
Piglet-shaders - PoC of custom shaders for Piglet

Piglet custom shader PoC This is a PoC for compiling Piglet fragment shaders usi

6 Mar 10, 2022
Monochromatic colorscheme for matplotlib with opinionated sensible default

Monochromatic colorscheme for matplotlib with opinionated sensible default If you need a simple monochromatic colorscheme for your matplotlib figures,

Aria Ghora Prabono 2 May 06, 2022
HW 02 for CS40 - matplotlib practice

HW 02 for CS40 - matplotlib practice project instructions https://github.com/mikeizbicki/cmc-csci040/tree/2021fall/hw_02 Drake Lyric Analysis Bar Char

13 Oct 27, 2021