Logica is a logic programming language that compiles to StandardSQL and runs on Google BigQuery.

Overview

Logica: language of Big Data

Logica is an open source declarative logic programming language for data manipulation. Logica is a successor to Yedalog, a language created at Google earlier.

Why?

Logica is for engineers, data scientists and other specialists who want to use logic programming syntax when writing queries and pipelines to run on BigQuery.

Logica compiles to StandardSQL and gives you access to the power of BigQuery engine with the convenience of logic programming syntax. This is useful because BigQuery is magnitudes more powerful than state of the art native logic programming engines.

We encourage you to try Logica, especially if

  • you already use logic programming and need more computational power, or
  • you use SQL, but feel unsatisfied about its readability, or
  • you want to learn logic programming and apply it to processing of Big Data.

In the future we plan to support more SQL dialects and engines.

I have not heard of logic programming. What is it?

Logic programming is a declarative programming paradigm where the program is written as a set of logical statements.

Logic programming was developed in academia from the late 60s. Prolog and Datalog are the most prominent examples of logic programming languages. Logica is a language of the Datalog family.

Datalog and relational databases start from the same idea: think of data as relations and think of data manipulation as a sequence of operations over these relations. But Datalog and SQL differ in how these operations are described. Datalog is inspired by the mathematical syntax of the first order propositional logic and SQL follows the syntax of natural language.

SQL was based on the natural language to give access to databases to the people without formal training in computer programming or mathematics. This convenience may become costly when the logic that you want to express is non trivial. There are many examples of hard-to-read SQL queries that correspond to simple logic programs.

How does Logica work?

Logica compiles the logic program into a SQL expression, so it can be executed on BigQuery, the state of the art SQL engine.

Among database theoreticians Datalog and SQL are known to be equivalent. And indeed the conversion from Datalog to SQL and back is often straightforward. However there are a few nuances, for example how to treat disjunction and negation. In Logica we tried to make choices that make understanding of the resulting SQL structure as easy as possible, thus empowering user to write programs that are executed efficiently.

Why is it called Logica?

Logica stands for Logic with aggregation.

How to learn?

Learn basics of Logica with the CoLab tutorial located at tutorial folder. See examples of using Logica in examples folder.

Tutorial and examples show how to access Logica from CoLab. You can also install Logica command line tool.

Prerequisites

To run Logica programs on BigQuery you will need a Google Cloud Project. Once you have a project you can run Logica programs in CoLab providing your project id.

To run Logica locally you need Python3.

To initiate Logica predicates execution from the command line you will need bq, a BigQuery command line tool. For that you need to install Google Cloud SDK.

Installation

Google Cloud Project is the only thing you need to run Logica in Colab, see Hello World example.

You can install Logica command with pip as follows.

# Install.
python3 -m pip install logica
# Run:
# To see usage message.
python3 -m logica
# To print SQL for HelloWorld program.
python3 -m logica - print Greet <<<'Greet(greeting: "Hello world!")'

If your PATH includes Python's bin folder then you will also be able to run it simply as

logica - print Greet <<<'Greet(greeting: "Hello world!")'

Alternatively, you can clone GitHub repository:

git clone https://github.com/evgskv/logica
cd logica
./logica - print Greet <<<'Greet(greeting: "Hello world!")'

Code samples

Here a couple examples of how Logica code looks like.

Prime numbers

Find prime numbers less than 30.

Program primes.l:

# Define natural numbers from 1 to 29.
N(x) :- x in Range(30);
# Define primes.
Prime(prime: x) :-
  N(x),
  x > 1,
  ~(
    N(y),
    y > 1,
    y != x,
    x % y == 0
  );

Running primes.l

$ logica primes.l run Prime
+-------+
| prime |
+-------+
|     2 |
|     3 |
|     5 |
|     7 |
|    11 |
|    13 |
|    17 |
|    19 |
|    23 |
|    29 |
+-------+

News mentions

Who was mentioned in the news in 2020 the most? Let's query GDELT Project dataset.

Program mentions.l

@OrderBy(Mentions, "mentions desc");
@Limit(Mentions, 10);
Mentions(person:, mentions? += 1) distinct :-
  gdelt-bq.gdeltv2.gkg(persons:, date:),
  Substr(ToString(date), 0, 4) == "2020",
  the_persons == Split(persons, ";"),
  person in the_persons;

Running mentions.l

$ logica mentions.l run Mentions
+----------------+----------+
|     person     | mentions |
+----------------+----------+
| donald trump   |  3624228 |
| joe biden      |  1591320 |
| los angeles    |  1221998 |
| george floyd   |   923472 |
| boris johnson  |   845955 |
| barack obama   |   541672 |
| vladimir putin |   486428 |
| bernie sanders |   409224 |
| andrew cuomo   |   375594 |
| nancy pelosi   |   375373 |
+----------------+----------+

Note that cities of Los Angeles and Las Vegas are mentioned in this table due to known missclasification issue in the GDELT data analysis.

Feedback

Feel free to create github issues for bugs and feature requests.

You questions and comments are welcome at our github discussions!


Unless otherwise noted, the Logica source files are distributed under the Apache 2.0 license found in the LICENSE file.

This is not an officially supported Google product.

Owner
Evgeny Skvortsov
Software Engineer
Evgeny Skvortsov
MariaDB connector using python and flask

MariaDB connector using python and flask This should work with flask and to be deployed on docker. Setting up stuff 1. Docker build and run docker bui

Bayangmbe Mounmo 1 Jan 11, 2022
python-bigquery Apache-2python-bigquery (🥈34 · ⭐ 3.5K · 📈) - Google BigQuery API client library. Apache-2

Python Client for Google BigQuery Querying massive datasets can be time consuming and expensive without the right hardware and infrastructure. Google

Google APIs 550 Jan 01, 2023
This is a repository for a task assigned to me by Bilateral solutions!

Processing-Files-using-MySQL This is a repository for a task assigned to me by Bilateral solutions! Task: Make Folders named Processing,queue and proc

Kandal Khandeka 1 Nov 07, 2022
Neo4j Bolt driver for Python

Neo4j Bolt Driver for Python This repository contains the official Neo4j driver for Python. Each driver release (from 4.0 upwards) is built specifical

Neo4j 762 Dec 30, 2022
MySQLdb is a Python DB API-2.0 compliant library to interact with MySQL 3.23-5.1 (unofficial mirror)

==================== MySQLdb Installation ==================== .. contents:: .. Prerequisites ------------- + Python 2.3.4 or higher * http://ww

Sébastien Arnaud 17 Oct 10, 2021
asyncio (PEP 3156) Redis support

aioredis asyncio (PEP 3156) Redis client library. Features hiredis parser Yes Pure-python parser Yes Low-level & High-level APIs Yes Connections Pool

aio-libs 2.2k Jan 04, 2023
Query multiple mongoDB database collections easily

leakscoop Perform queries across multiple MongoDB databases and collections, where the field names and the field content structure in each database ma

bagel 5 Jun 24, 2021
Kafka Connect JDBC Docker Image.

kafka-connect-jdbc This is a dockerized version of the Confluent JDBC database connector. Usage This image is running the connect-standalone command w

Marc Horlacher 1 Jan 05, 2022
A CRUD and REST api with mongodb atlas.

Movies_api A CRUD and REST api with mongodb atlas. Setup First import all the python dependencies in your virtual environment or globally by the follo

Pratyush Kongalla 0 Nov 09, 2022
Asynchronous interface for peewee ORM powered by asyncio

peewee-async Asynchronous interface for peewee ORM powered by asyncio. Important notes Since version 0.6.0a only peewee 3.5+ is supported If you still

05Bit 666 Dec 30, 2022
Python PostgreSQL database performance insights. Locks, index usage, buffer cache hit ratios, vacuum stats and more.

Python PG Extras Python port of Heroku PG Extras with several additions and improvements. The goal of this project is to provide powerful insights int

Paweł Urbanek 35 Nov 01, 2022
A database migrations tool for SQLAlchemy.

Alembic is a database migrations tool written by the author of SQLAlchemy. A migrations tool offers the following functionality: Can emit ALTER statem

SQLAlchemy 1.7k Jan 01, 2023
Google Cloud Client Library for Python

Google Cloud Python Client Python idiomatic clients for Google Cloud Platform services. Stability levels The development status classifier on PyPI ind

Google APIs 4.1k Jan 01, 2023
Async ODM (Object Document Mapper) for MongoDB based on python type hints

ODMantic Documentation: https://art049.github.io/odmantic/ Asynchronous ODM(Object Document Mapper) for MongoDB based on standard python type hints. I

Arthur Pastel 732 Dec 31, 2022
db.py is an easier way to interact with your databases

db.py What is it Databases Supported Features Quickstart - Installation - Demo How To Contributing TODO What is it? db.py is an easier way to interact

yhat 1.2k Jan 03, 2023
Dinamopy is a python helper library for dynamodb

Dinamopy is a python helper library for dynamodb. You can define your access patterns in a json file and can use dynamic method names to make operations.

Rasim Andıran 2 Jul 18, 2022
A selection of SQLite3 databases to practice querying from.

Dummy SQL Databases This is a collection of dummy SQLite3 databases, for learning and practicing SQL querying, generated with the VS Code extension Ge

1 Feb 26, 2022
Async database support for Python. 🗄

Databases Databases gives you simple asyncio support for a range of databases. It allows you to make queries using the powerful SQLAlchemy Core expres

Encode 3.2k Dec 30, 2022
Google Sheets Python API v4

pygsheets - Google Spreadsheets Python API v4 A simple, intuitive library for google sheets which gets your work done. Features: Open, create, delete

Nithin Murali 1.4k Dec 31, 2022
A Python Object-Document-Mapper for working with MongoDB

MongoEngine Info: MongoEngine is an ORM-like layer on top of PyMongo. Repository: https://github.com/MongoEngine/mongoengine Author: Harry Marr (http:

MongoEngine 3.9k Jan 08, 2023