Pattern Matching in Python

Overview

Pattern Matching finalmente chega no Python 3.10. E daí?

"Pattern matching", ou "correspondência de padrões" como é conhecido no Brasil. Algumas pessoas já conhecem; praticamente todas as que conhecem, amam. Compreensível: pattern matching oferece uma maneira concisa e elegante de verificar e validar valores e objetos em nossos programas.
Por ser uma funcionalidade que essencialmente nasceu com linguagens cujo paradigma principal é o funcional, o pattern matching é algo que já podia ser encontrado em linguagens como Haskell, Scala, Elixir, OCaml e F# (entre outras). Se tornou tão popular como uma funcionalidade que é consistentemente apreciada pela vasta maioria dos programadores que linguagens não-primariamente funcionais começaram a adotá-la, como Rust e, agora, Python.

Então vamos lá. Por que tanto barulho quando se fala de pattern matching? Qual é o motivo do hype? Afinal de contas, como algumas pessoas dizem...

É tipo um switch/case, né?

Bem, sim e não. "Sim" porque definitivamente pode ser usado como um switch/case; "não" porque vai muito, muito além de um simples switch/case. Para exemplificar, revisitemos alguns exemplos de switch/case em uma linguagem similarmente popular: JavaScript.
Pelo bem da simplicidade, tentaremos manter os exemplos simples o suficiente para que não haja uma necessidade adicional de aprender sobre a linguagem em si.

Todos os exemplos de JavaScript foram testados no console do navegador Google Chrome, versão 90.0.4430.212

Vamos supor que queiramos implementar um simples fatorial usando switch/case e recursividade em JavaScript. Precisamos:

  • receber um número inteiro como argumento,
  • verificar o seu valor:
    • se for 0 ou 1, retornamos 1.
    • caso contrário, sendo n, retornamos n * factorial(n-1).

Em um primeiro rascunho, temos:

function factorial(n) {
    switch (n) {
        case 0:
            return 1;

        case 1:
            return 1;

        default:
            return n * factorial(n-1);
    }
}

O equivalente usando pattern matching em Python seria:

def factorial(n):
    match n:
        case 0:
            return 1
        
        case 1:
            return 1
        
        case _:
            return n * factorial(n-1)

A primeira diferença que podemos observar é a palavra match: em vez de switch, como nas linguagens que usam switch/case, o pattern matching do Python usa match. Fora isso, em vez do default, temos case _ como o "pega tudo" do match. Pythonistas já conhecem e usam o underscore (_) quando querem ignorar o valor; em uma instrução match, ele serve exatamente o mesmo propósito.

Certo, em ambos os casos nós temos dois return 1. Em JavaScript é fácil resolver: só precisamos nos aproveitar do fall-through, ou efeito cascata do switch:

function factorial(n) {
    switch (n) {
        case 0:
        case 1:
            return 1;

        default:
            return n * factorial(n-1);
    }
}

Analogamente, o match do Python nos oferece o operador or. Com este operador, podemos capturar um ou outro padrão.

def factorial(n):
    match n:
        case 0 | 1:
            return 1

        case _:
            return n * factorial(n-1)

E da mesma forma como podemos utilizar múltiplos níveis de cascata em um switch, podemos capturar múltiplos padrões com o operador or em um match:

function factorial(n) {
    switch (n) {
        case -2:
        case -1:
        case 0:
        case 1:
            return 1;

        default:
            return n * factorial(n-1);
    }
}
def factorial(n):
    match n:
        case -2 | -1 | 0 | 1:
            return 1

        case _:
            return n * factorial(n-1)

Legal, né? Podemos capturar diversos padrões de uma vez só e executar um só bloco associado a eles. Mas este exemplo levanta uma questão: normalmente, quando calculamos fatorial em programação, precisamos checar se o número recebido como argumento é maior ou igual a zero. Em ambas as instruções podemos aninhar uma instrução if como a seguir:

function factorial(n) {
    switch (n) {
        case 0:
        case 1:
            return 1;

        default:
            return (n < 0) ? null : n * factorial(n - 1);
            // ou
            if (n < 0) {
                return null;
            }
            else {
                return n * factorial(n-1);
            }
    }
}
def factorial(n):
    match n:
        case 0 | 1:
            return 1

        case _:
            return None if n < 0 else n * factorial(n-1)
            # ou
            if n < 0:
                return None

            else:
                return n * factorial(n-1)

E é aqui que o pattern matching começa a brilhar mais do que o simplório switch/case. Neste caso podemos fazer uso de guardas.

Guardas? Como assim guardas?

guard

Sim, guardas. E eles fazem exatamente o que o meme sugere: "permitem" a execução do bloco de código caso uma condição seja verdadeira. Ao adaptar o código acima para usar guardas, ficamos com

def factorial(n):
    match n:
        case 0 | 1:
            return 1

        case _ if n > 1:
            return n * factorial(n-1)

        case _:
            return None

Precisamos destacar dois pontos aqui:

  1. Diferentemente do meme, escrevemos case _ em vez de case n. Isso é porque já temos o n definido. Mas mais à frente veremos exemplos onde o guarda fará uso de variáveis definidas no respectivo case.
  2. É verdade que escrevemos mais do que se fizermos como no one-liner do exemplo anterior a este, mas leve em consideração que desta forma não só é mais legível como vale para o bloco inteiro, não limitado a uma única expressão.

Mudemos um pouco o exemplo. Em vez de continuarmos calculando fatoriais, vamos ver agora como podemos lidar com listas e tuplas* no contexto do pattern matching. Já sabemos que tanto em Python quanto em JavaScript podemos separar o(s) primeiro(s) elemento(s) de uma lista do resto dela.

Devido à natureza das tuplas do Python, todos os exemplos usando listas também se aplicam a tuplas.

Se escrevermos:

let list = [1, 2, 3, 4, 5];
let [head, ...tail] = list;
console.log(head);
console.log(tail);

veremos que o JavaScript atribuirá o valor 1 à variável head e a lista [2, 3, 4, 5] à variável tail, imprimindo-os no console logo após. Da mesma forma, podemos escrever em Python:

list_ = [1, 2, 3, 4, 5]
[head, *tail] = list_
print(head)
print(tail)

para obter exatamente a mesma saída. E, claro, podemos usar quantas variáveis quisermos entre head e tail desde que tenhamos elementos o suficiente na lista:

let list = [1, 2, 3, 4, 5];
let [head, neck, torso, ...tail] = list;
console.log({head, neck, torso, tail});
list_ = [1, 2, 3, 4, 5]
[head, neck, torso, *tail] = list_
print(dict(head=head, neck=neck, torso=torso, tail=tail))

Se tentarmos capturar mais valores do que é possível, o Python nos mostrará uma mensagem de erro. E com razão:

>>> [head, neck, *tail] = [1]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: not enough values to unpack (expected at least 2, got 1)

Ou seja, conseguimos colocar o valor 1 em head, mas não existe mais nada na lista para colocarmos na variável neck. A mensagem de erro é clara: esperava pelo menos 2 [valores], mas há só 1. Em situações normais, precisaríamos verificar o tamanho da lista antes de realizar esta atribuição.
(Em JavaScript, neck recebe undefined.)

Com isso chegamos ao próximo tópico, onde veremos como o match lida automaticamente com esse tipo de ocasião.

Desmontando objetos

O termo original em inglês é "destructuring". Eu decidi traduzir como "desmontando" porque, bem, é exatamente isso que acontece. Você passou por aquela fase, quando criança, em que queria desmontar os seus brinquedos? Quebrá-los em pequenos pedaços para que pudesse ver e entender como é por dentro ou como funciona? A instrução match nos ajuda a fazer algo parecido. Não só isso: ela faz checagens por nós, deixando que escrevamos menos e façamos mais.

Vamos voltar ao exemplo com listas. Podemos escrever:

def match_list(the_list):
    match the_list:
        case []:
            print('a lista está vazia')

        case [x]:
            print(f'a lista possui um único elemento: {x}')

        case [x, y]:
            print(f'a lista possui dois elementos: {x} e {y}')

        case _:
            print('a lista possui mais de dois elementos')

match_list([])
match_list([10])
match_list([3, 7])
match_list([1, 2, 3, 4, 5])

seguido de sua execução:

$ python py-06-match-list-destructuring.py 
a lista está vazia
a lista possui um único elemento: 10
a lista possui dois elementos: 3 e 7
a lista possui mais de dois elementos

Opa, pera aí! Esse match sabe o que fazer com listas de tamanhos diferentes? Sim! E é aí que começa a diversão. O match faz todas as verificações de forma implícita quando escrevemos os casos. Neste exemplo, ele verifica:

  • se a lista está vazia (len(the_list) == 0),
  • se a lista possui um elemento (len(the_list) == 1), e
  • se a lista possui dois elementos (len(the_list) == 2).

Se a lista for composta de um elemento, ele atribui esse único elemento à variável x. Se forem dois, atribui ambos os elementos às variáveis x e y.

Mas não termina aqui; é possível fazer a mesma coisa com dicionários, capturando apenas as chaves que nos interessam:

def match_dict(the_dict):
    match the_dict:
        case _ if len(the_dict) == 0:
            print('o dicionário está vazio')

        case {'name': nome}:
            print(f'a chave nome possui o valor {nome}')

        case {'date': data, 'article': {'title': titulo}}:
            print(f'o artigo {titulo} foi publicado em {data}')

        case _:
            print('nenhuma chave nos interessa')

match_dict({})
match_dict({'name': 'Fabricio', 'age': 29})
match_dict({'date': '01/06/2021', 'time': '00:10', 'article': {'title': 'Pattern Matching do Python'}})
match_dict({'what is love': "baby don't hurt me"})

E a sua execução:

$ python py-07-match-dict-destructuring.py 
o dicionário está vazio
a chave nome possui o valor Fabricio
o artigo Pattern Matching do Python foi publicado em 01/06/2021
nenhuma chave nos interessa

Perceba que não podemos tentar capturar o dicionário vazio ({}) pois o dicionário com o menor número de chaves válidas é o que passa. E o dicionário vazio é o dicionário com o menor número de chaves válidas: zero.

>>> match {'key': 'value'}:
...     case {}:
...         print('vazio')
...     case {'key': v}:
...         print(v)
... 
vazio

Diferentemente do switch/case, não precisamos escrever breaks ao fim de cada case; o match funciona como uma cadeia de ifs, interrompendo-se ao encontrar a primeira correspondência.

Bora aumentar o nível. Mas com cuidado para não nos machucarmos, pois cair de árvores pode doer.

Uma possível maneira de implementar uma árvore binária com uma função que calcula a sua altura em JavaScript é a seguinte:

class Tree {}

class Branch extends Tree {
    constructor(value, left, right) {
        super();
        [this.value, this.left, this.right] = [value, left, right];
    }
}

class Leaf extends Tree {}

function treeHeight(tree) {
    if (tree instanceof Branch) {
        let [left, right] = [tree.left, tree.right];
        return 1 + Math.max(treeHeight(left), treeHeight(right));
    }
    else if (tree instanceof Leaf) {
        return 0;
    }
}

let tree = new Branch(5,
                      new Branch(3,
                                 new Leaf(), new Leaf()),
                      new Leaf());

console.log(treeHeight(tree));
2

Claro que esse não é o tipo de código que veríamos no dia a dia - se fosse para usar classes desta forma, o "normal" seria que tanto Branch quanto Leaf sobreescrevessem um método height da superclasse Tree. Mas é importante que vejamos como treeHeight é implementado. Atenção especial aos if instanceof e [left, right] = [tree.left, tree.right] pois é nestes pontos que o match do Python se destaca.

class Tree:
    pass

class Branch(Tree):
    __match_args__ = ('value', 'left', 'right')

    def __init__(self, value, left, right):
        (self.value, self.left, self.right) = (value, left, right)

class Leaf(Tree):
    pass


def tree_height(tree):
    match tree:
        case Branch(_, left, right):
            return 1 + max(tree_height(left), tree_height(right))

        case Leaf():
            return 0


tree = Branch(5,
              Branch(3,
                     Leaf(), Leaf()),
              Leaf())


print(tree_height(tree))
$ python py-08-match-object-destructuring.py 
2

Isso mesmo - o match não só valida o tipo correto como também já é capaz de associar os valores dos atributos a variáveis para que possamos usá-las. E podemos aninhar padrões do mesmo jeito que podemos aninhar dicionários. Isso significa que é possível capturar o valor de um Branch final assim:

case Branch(v, Leaf(), Leaf()):
    # isinstance(left, Leaf) and isinstance(right, Leaf) == True
    # fazer algo com v, p.ex.:
    return v

O exemplo completo:

class Tree:
    pass

class Branch(Tree):
    __match_args__ = ('value', 'left', 'right')

    def __init__(self, value, left, right):
        (self.value, self.left, self.right) = (value, left, right)

class Leaf(Tree):
    pass


def get_first_double_leaf_branch_value(tree):
    match tree:
        # a
        case Branch(v, Leaf(), Leaf()):
            return v

        # b
        case Branch(_, Branch() as left, _):
            return get_first_double_leaf_branch_value(left)

        # c
        case Branch(_, _, Branch() as right):
            return get_first_double_leaf_branch_value(right)

        # d
        case Leaf():
            return None


tree = Branch(5,
              Branch(3,
                     Leaf(),
                     Branch(4,
                            Leaf(), Leaf())),
              Leaf())


print(get_first_double_leaf_branch_value(tree))
$ python py-08b-match-object-destructuring.py 
4
  • No caso a temos o que queremos: um Branch com dois Leafs. Só retornamos o valor.
  • No caso b temos um Branch com outro Branch à esquerda; seguimos por este lado recursivamente.
  • No caso c, mesma coisa que b. Porém, à direita.
  • Finalmente, o caso d indica que a Tree que foi passada como argumento é um mero Leaf; retornamos None.

Espera um pouco. Isso não significa que conseguimos validar valores diretamente nos nossos padrões? E se...

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def is_age_major(self):
        match self:
            case Person(name=n, age=18):  # 18 é a maioridade na maioria dos países
                print(f'{n} acabou de atingir a maioridade!')
                return True

            case Person(age=a) if a > 18:
                return True

            case _:
                return False


print(Person('Felipe', 18).is_age_major())
print(Person('Fabrício', 29).is_age_major())
print(Person('Letícia', 15).is_age_major())
$ python py-08c-match-object-destructuring.py 
Felipe acabou de atingir a maioridade!
True
True
False

E quando nenhum dos padrões atende ao valor?

Algumas liguagens adotaram comportamentos diferentes quanto à checagem de casos. Rust é a mais rígida neste sentido: o programador recebe um erro de compilação caso a checagem não seja exaustiva (ou seja, caso ele não tenha checado todos os padrões possíveis). F# preferiu apenas mostrar um warning ao programador, avisando que alguns padrões não foram cobertos. Se o valor não se encaixar em nenhum padrão, ocorre um erro de tempo de execução (runtime error).

Python é um pouco pouco mais relaxado quanto a isso; se nenhum caso for adequado, o programa simplesmente segue em frente. Do mesmo jeito que uma cadeia de ifs e elifs não precisa de um else, um match não necessariamente precisa de um case _.

def exhaustive_matching(number):
    match number:
        case -1:
            return '<'

        case 0:
            return '='

        case 1:
            return '>'

        case _:
            return 'dunno'


def non_exhaustive_matching(number):
    match number:
        case -1:
            return '<'

        case 0:
            return '='

        case 1:
            return '>'


print(exhaustive_matching(10))
print(non_exhaustive_matching(-10))
$ python py-09-match-exhaustive.py
dunno
None

Uma função que não retorna nada explicitamente retorna None implicitamente.

Conclusão

Vimos neste extenso artigo algumas maneiras de se usar match, como ele se compara com o que já conhecemos de outras linguagens - switch/case, if instanceof do JavaScript - e como ele é dimensões superior a essas estruturas. O pattern matching é uma funcionalidade já presente em muitas linguagens; agora os Pythonistas também poderão usufruir de todo o seu poder e criar aplicações ainda mais incríveis. Para finalizar, você consegue dizer o que a próxima função faz?

def m(f, xs):
    match xs:
        case x, *xs_:
            yield f(x)
            yield from m(f, xs_)

        case []:
            pass

  • Escrito com base na PEP 636;
  • Testado com a imagem docker python:3.10-rc-alpine
Owner
Fabricio Werneck
Ti Ne Si Fe
Fabricio Werneck
Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

ICTNLP 29 Oct 16, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

317 Dec 23, 2022
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

94 Dec 08, 2022
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022
A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

Alexa 62 Dec 20, 2022
Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention April 6, 2021 We extended segment-means to compute landmarks without requiri

Zhanpeng Zeng 322 Jan 01, 2023
Deep learning for NLP crash course at ABBYY.

Deep NLP Course at ABBYY Deep learning for NLP crash course at ABBYY. Suggested textbook: Neural Network Methods in Natural Language Processing by Yoa

Dan Anastasyev 597 Dec 18, 2022
Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries

GTFONow Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries. Features Automatically escalate privileges using miscon

101 Jan 03, 2023
NLP-SentimentAnalysis - Coursera Course ( Duration : 5 weeks ) offered by DeepLearning.AI

Coursera Natural Language Processing Specialization This repository contains material related to Coursera Natural Language Processing Specialization.

Nishant Sharma 1 Jun 05, 2022
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Vladimir Larin 7 Nov 15, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
Amazon Multilingual Counterfactual Dataset (AMCD)

Amazon Multilingual Counterfactual Dataset (AMCD)

35 Sep 20, 2022
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
HAIS_2GNN: 3D Visual Grounding with Graph and Attention

HAIS_2GNN: 3D Visual Grounding with Graph and Attention This repository is for the HAIS_2GNN research project. Tao Gu, Yue Chen Introduction The motiv

Yue Chen 1 Nov 26, 2022
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022