FedML: A Research Library and Benchmark for Federated Machine Learning

Overview

FedML: A Research Library and Benchmark for Federated Machine Learning

📄 https://arxiv.org/abs/2007.13518

Roadmap Python3 PyTorch Travis Contributors

News

2021-02-01 (Award): #NeurIPS 2020# FedML won Best Paper Award at NeurIPS Federated Learning workshop 2020

2020-12-12 (Conference Presentation): #NeurIPS 2020# We gave a contributed talk at NeurIPS 2020. Please check the video here: https://www.youtube.com/watch?v=93SETZGZMyI

The slides of this presentation are also open source (yes, we open source everything of FedML!): https://docs.google.com/presentation/d/1ykAQ_GpzEoRVJeMr1hXUHlJSBpzW2P6Wuzud8RTF0oo/edit#slide=id.p

2020-11-27 (System): FedML architecture has evolved into an ecosystem including multiple GitHub repositories. With FedML at its core, we can support more advanced FL applications and platforms.
FedML: https://github.com/FedML-AI/FedML

FedNLP: https://github.com/FedML-AI/FedNLP (We plan to release at the end of March 2021. Please stay tuned!)

FedML-IoT: https://github.com/FedML-AI/FedML-IoT

FedML-Server: https://github.com/FedML-AI/FedML-Server

FedML-Mobile: https://github.com/FedML-AI/FedML-Mobile

2020-11-24 (Publication): We are thrilled to share that the short version of our FedML white paper has been accepted to NeurIPS 2020 workshop. Thanks for reviewers from NeurIPS, supporting us to do a presentation there.

2020-11-05 (System): Do you want to run federated learning on IoT devices? FedML architecture design can smoothly transplant the distributed computing code to the IoT platform. FedML can support edge training on two IoT devices: Raspberry Pi 4 and NVIDIA Jetson Nano!!! Please check it out here: https://github.com/FedML-AI/FedML/blob/master/fedml_iot/README.md

2020-10-28 (Algorithms) : We released more advanced federated optimization algorithms, more than just FedAvg! http://doc.fedml.ai/#/algorithm-reference-implementation

2020-10-26 (Publication) : V2 of our white paper is released. Please check out here: https://arxiv.org/pdf/2007.13518.pdf

2020-10-07 (Model and Dataset) : Datasets + Models ALL IN ONE!!! FedML supports comprehensive research-oriented FL datasets and models:

  • cross-device CV: Federated EMNIST + CNN (2 conv layers)
  • cross-device CV: CIFAR100 + ResNet18 (Group Normalization)
  • cross-device NLP: shakespeare + RNN (bi-LSTM)
  • cross-device NLP: stackoverflow (NWP) + RNN (bi-LSTM)
  • cross-silo CV: CIFAR10, CIFAR100, CINIC10 + ResNet
  • cross-silo CV: CIFAR10, CIFAR100, CINIC10 + MobileNet
  • linear: MNIST + Logistic Regression

Please check create_model(args, model_name, output_dim) and load_data(args, dataset_name) at fedml_experiments/distributed/fedavg/main_fedavg.py for details.

We will support more advanced models and datasets, please stay tuned!


2020-09-30 (Publication): We maintained a comprehensive publication list of Federated Learning here: https://github.com/chaoyanghe/Awesome-Federated-Learning


2020-09-28 (Publication): Authors of FedML (https://fedml.ai) have 7 papers that got accepted to NeurIPS 2020. Big congratulations!!! Here is the publication list: https://github.com/FedML-AI/FedML/blob/master/publications.md. Highlighted ones are related to large-scale distributed learning and federated learning.

What is Federated Learning?

Please read this long vision paper Advances and Open Problems in Federated Learning.

This publication list is also helpful: https://github.com/chaoyanghe/Awesome-Federated-Learning

Introduction

Federated learning is a rapidly growing research field in the machine learning domain. Although considerable research efforts have been made, existing libraries cannot adequately support diverse algorithmic development (e.g., diverse topology and flexible message exchange), and inconsistent dataset and model usage in experiments make fair comparisons difficult. In this work, we introduce FedML, an open research library and benchmark that facilitates the development of new federated learning algorithms and fair performance comparisons. FedML supports three computing paradigms (distributed training, mobile on-device training, and standalone simulation) for users to conduct experiments in different system environments. FedML also promotes diverse algorithmic research with flexible and generic API design and reference baseline implementations. A curated and comprehensive benchmark dataset for the non-I.I.D setting aims at making a fair comparison. We believe FedML can provide an efficient and reproducible means of developing and evaluating algorithms for the federated learning research community. We maintain the source code, documents, and user community at https://FedML.ai.

For more details, please read our full paper: https://arxiv.org/abs/2007.13518

Usage

  1. Research on FL algorithm or system
  2. Teaching in a ML course
  3. System prototype for industrial production.
  4. Self-study FL: understanding code level details of FL algorithms.

Architecture

The functionality of each package is as follows:

fedml_core: The FedML low level API package. This package implements distributed computing by communication backend like MPI, and also support topology management. Other low-level APIs related to security and privacy are also supported.

fedml_api: The FedML high level API package. This package support different federated learning algorithm with only one line code. All algorithms are built based on the "fedml_core" package. Users can change this package to add more advanced algorithms.

fedml_experiments: This package is used to test algorithms in "fedml" package by calling high level APIs.

fedml_mobile: This package is used to support on-device training using Android/iOS smartphones.

fedml_IoT: This package is used to support on-device training using IoT devices.

applications: This package is a collection of applications based on FedML.

benchmark: This package is used to run benchmark experiments.

Join our Community

Please join our community. We will post updated features and answer questions on Slack.

Join fedml.slack.com (this is a link that never expires)

Citation

Please cite FedML in your publications if it helps your research:

@article{chaoyanghe2020fedml,
  Author = {He, Chaoyang and Li, Songze and So, Jinhyun and Zhang, Mi and Wang, Hongyi and Wang, Xiaoyang and Vepakomma, Praneeth and Singh, Abhishek and Qiu, Hang and Shen, Li and Zhao, Peilin and Kang, Yan and Liu, Yang and Raskar, Ramesh and Yang, Qiang and Annavaram, Murali and Avestimehr, Salman},
  Journal = {arXiv preprint arXiv:2007.13518},
  Title = {FedML: A Research Library and Benchmark for Federated Machine Learning},
  Year = {2020}
}

Contacts

The corresponding author is:

Chaoyang He
[email protected]
http://chaoyanghe.com

Comments
  • FedAvg accuracy stucks under 50

    FedAvg accuracy stucks under 50

    I am training Fedavg to get the benchmark accuracy with the given parameters. But, the accuracy is stuck under 50.

    Here is all my code:

    !git clone https://github.com/FedML-AI/FedML

    cd /content/FedML/fedml_experiments/standalone/fedavg

    !python main_fedavg.py --model mobilenet --dataset cifar10 --data_dir ./../../../data/cifar10 --partition_method hetero --comm_round 100 --epochs 20 --batch_size 64 --lr 0.001

    I suppose to get over 80% accuracy at least according to these benchmark results.

    https://wandb.ai/automl/fedml/runs/390hdz0e

    opened by AbdulMoqeet 39
  • About the args in FedML parrot examples.

    About the args in FedML parrot examples.

    from the step3 in docs https://doc.fedml.ai/simulation/examples/sp_fedavg_mnist_lr_example.html, I am told to execute the following command to run the example code: python torch_fedavg_mnist_lr_one_line_example.py --cf fedml_config.yaml However, when I tried to modify the args in this YAML file (eg. set the using_gpu to true), I found that in the runtime the training is still based on the CPU. So I checked the code in fedml/lib/python3.7/site-packages/fedml/arguments.py, line 63, and I found a snippet of code as follows: `

        path_current_file = path.abspath(path.dirname(__file__))
        if training_type == "simulation" and comm_backend == "single_process":
            config_file = path.join(path_current_file, "config/simulation_sp/fedml_config.yaml")
            cmd_args.yaml_config_file = config_file
        elif training_type == "simulation" and comm_backend == "MPI":
            config_file = path.join(
                path_current_file, "config/simulaton_mpi/fedml_config.yaml"
            )
            cmd_args.yaml_config_file = config_file
        elif training_type == "cross_silo":
            pass
        elif training_type == "cross_device":
            pass
        else:
            pass
    

    ` It seems during the simulation, it does not matter how you set the YAML file, the default one would be loaded.

    opened by JLU-Neal 12
  • Running error with mpi_torch_fedavg_mnist_lr_example

    Running error with mpi_torch_fedavg_mnist_lr_example

    When running the following code

    #!/usr/bin/env bash
    
    WORKER_NUM=$1
    
    PROCESS_NUM=`expr $WORKER_NUM + 1`
    echo $PROCESS_NUM
    
    hostname > mpi_host_file
    
    $(which mpirun) -np $PROCESS_NUM \
    -hostfile mpi_host_file \
    python torch_fedavg_mnist_lr_one_line_example.py --cf config/fedml_config.yaml
    

    Encounter an error

    (base) PS C:\Users\doubl\Desktop\script\fedml> bash run_step_by_step_example.sh 4                                       
    5                                                                                                                       
    run_step_by_step_example.sh: line 10: -np: command not found   
    

    The code is excuted as the instructions in https://doc.fedml.ai/simulation/examples/mpi_torch_fedavg_mnist_lr_example.html, and all the dependency is installed.

    opened by mh-lan 10
  • Installation encountered multiple errors

    Installation encountered multiple errors

    The first error encountered is :

    Building wheels for collected packages: fedml
      Building wheel for fedml (setup.py) ... error
      error: subprocess-exited-with-error
    
      × python setup.py bdist_wheel did not run successfully.
      │ exit code: 1
      ╰─> [1027 lines of output]
    

    The second error :

    error: could not create 'build\bdist.win-amd64\wheel\fedml-0.7.305.data\purelib\examples\cross_silo\mqtt_s3_fedavg_hierarchical_manual_mnist_lr_example\one_line\main_fedml_cross_silo_hi.py': No such file or directory
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
      ERROR: Failed building wheel for fedml
      Running setup.py clean for fedml
    Failed to build fedml
    

    The last message displayed is :

    DEPRECATION: fedml was installed using the legacy 'setup.py install' method, because a wheel could not be built for it. A possible replacement is to fix the wheel build issue reported above. Discussion can be found at https://github.com/pypa/pip/issues/8368
    

    The installation steps are all installed in accordance with the FEDML INSTALLATION ON WINDOWS OS teaching, also tried using older versions of python (eg: 3.7, 3.9), but still got the same problem.

    opened by MING-LI-JIANG 9
  •  ModuleNotFoundError: No module named 'fedml.data.fednlp'

    ModuleNotFoundError: No module named 'fedml.data.fednlp'

    When running the example of TEXT CLASSIFICATION in fednlp. bash run_simulation.sh 1 Encounter an error image Is this caused by fedml or what else? All dependency is installed. Link: https://github.com/FedML-AI/FedML/tree/master/python/app/fednlp

    opened by Luoyang144 8
  • standalone Benchmark running the MNIST and Shakespeare

    standalone Benchmark running the MNIST and Shakespeare

    I can not get the same results when I run the command: sh run_fedavg_standalone_pytorch.sh 0 10 10 10 shakespeare ./../../../data/shakespeare rnn hetero 100 1 0.8 sgd 0 my results is: https://wandb.ai/pilgrim_cz/fedml/runs/5jqpw1i4?workspace=user-pilgrim_cz the benchmart res is https://wandb.ai/automl/fedml/runs/144ey9w6 same problem when I run minst dataset Is there anything wrong? I did not change any code.

    opened by sjtu-cz 8
  • Using your specified gpus' list by customizing the function

    Using your specified gpus' list by customizing the function "init_training_device"!

    Running the fedavg on the configure: 20 rounds, 10 epochs, 2 clients, cifar-10 dataset, resnet56, but the program always crashed! The errors as the following:

    W1GVSRF_Z(@7RQL9}K2ET$X

    I don't know the reason for the errors.

    good first issue 
    opened by weiyikang 8
  • How to run cross-silo with MPI?

    How to run cross-silo with MPI?

    How to run fedml /python/examples/simulation/MPI locally_ base_ framework_ The code in example, I use readme.md runs. The error in the figure appears. I have deployed the mqtt server locally. I have configured comm in the configuration file_ args.mqtt_ config_ Path, but it doesn't work

    image

    How to remove mlops? I set using_mlops: false has no effect

    opened by JessKXWL 7
  • Question about FedGKT

    Question about FedGKT

    Hi, I tried to run the FedGKT algorithm but the code got stuck in this part. For the FedAvg, it worked well. For my setting case, I just ran the code on the CPU. So can anyone help me with this? Thank you! P/s: Here I ran with 8 clients. fedgtkprob2 fedgtkprob1

    opened by Agent2H 7
  • After few communication round, client and server are losing the connection (fedcv/object_detection)

    After few communication round, client and server are losing the connection (fedcv/object_detection)

    I was using FedML platform for testing distributed training results for object detection between single server and multiple clients. Unfortunately, MQTT has some issue where server or client sometimes cannot receive the packet properly and showing only:

    receive_message. msg_type = 0, sender_id = 0, receiver_id = 0
    receive_message. msg_type = 0, sender_id = 0, receiver_id = 0
    

    where msg_type = 0 means received message has been corrupted. Although, I am using one server with multiple GPU to simulate server and clients based distributed training CROSS_SILO_HORIZONTAL mode, I could not understand why is this happening. Especially, when i use bigger data, this problem is happening in very early communication rounds.

    So, if anyone has solution with this problem, please share your experience.

    Just in case, I am attaching output of server and clients screenshots.

    SERVER OUTPUT server_output

    CLIENT-1 OUTPUT client_output

    CLIENT-2 OUTPUT client2_output

    opened by Adeelbek 6
  • Training and Test mAP@50 and mAP50:95 are showing very strange results in fedcv object detection

    Training and Test [email protected] and mAP50:95 are showing very strange results in fedcv object detection

    I have training Cross-Silo Horizontal distributed training mode with following configuration settings:

    common_args:
      training_type: "cross_silo"
      random_seed: 0
      scenario: "horizontal"
      using_mlops: false
      config_version: release
      name: "exp" # yolo
      project: "runs/train" # yolo
      exist_ok: true # yolo
    
    environment_args:
      bootstrap: /home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/config/bootstrap.sh
    
    data_args:
      dataset: "bdd"
      data_cache_dir: ~/fedcv_data
      partition_method: "homo"
      partition_alpha: 0.5
      data_conf: "/home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/data/bdd.yaml" # yolo
      img_size: [640, 640] # [640, 640]
    
    model_args:
      model: "yolov5" # "yolov5"
      class_num: 13
      yolo_cfg: "/home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/model/yolov5/models/yolov5s.yaml" # "./model/yolov6/configs/yolov6s.py" # yolo
      yolo_hyp: "/home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/config/hyps/hyp.scratch.yaml" # yolo
      weights: "none" # "best.pt" # yolo
      single_cls: false # yolo
      conf_thres: 0.001 # yolo
      iou_thres: 0.6 # for yolo NMS
      yolo_verbose: true # yolo
    
    train_args:
      federated_optimizer: "FedAvg"
      client_id_list:
      client_num_in_total: 2
      client_num_per_round: 2
      comm_round: 10
      epochs: 4
      batch_size: 64
      client_optimizer: sgd
      lr: 0.01
      weight_decay: 0.001
      checkpoint_interval: 1
      server_checkpoint_interval: 1
    
    validation_args:
      frequency_of_the_test: 2
    
    device_args:
      worker_num: 2
      using_gpu: true
      gpu_mapping_file: /home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/config/gpu_mapping.yaml
      gpu_mapping_key: mapping_config5_2
      gpu_ids: [0,1,2,3,4,5,6,7]
    
    comm_args:
      backend: "MQTT_S3"
      mqtt_config_path: /home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/config/mqtt_config.yaml
      s3_config_path: /home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/config/s3_config.yaml
    
    tracking_args:
      log_file_dir: /home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/log
      enable_wandb: true
      wandb_key: ee0b5f53d949c84cee7decbe7a6
      wandb_project: fedml
      wandb_name: fedml_torch_object_detection
    
    

    During the training I have got very high [email protected] and [email protected]:95 almost for every epoch from beginning till the end. Normally, mAP should be small for early training epochs and it should grow slowly in the later epochs. But in my case it is just fluctuating in range of 0.985 ~ 0.9885 for both clients. I have checked metric calculation functions borrowed from original YOLOv5 PyTorch platform. They are working fine. IF ANYBODY CAN SHARE THEIR PRELIMINARY RESULTS FOR DISTRIBUTED OBJECT DETECTION FOR ANY DATASET (COCO or PASCAL VOC). I would like to verify my result with their result. For solo YOLOv5s model training, ,mAP is much smaller and it is growing epochs by epochs.

    Any clue from the Authors would be very much appreciated.

    P.S. For mAP calculation, I used default val(train_data, device, args) function inside the YOLOv5Trainer class in the yolov5_trainer.py .

    opened by Adeelbek 6
  • where is the test_arm_android_64.sh in fedmlsdk MobileNN?

    where is the test_arm_android_64.sh in fedmlsdk MobileNN?

    Hello, recently I'm trying to reproduce the demo of fedmlsdk on android device,and I followed the tutorial at https://github.com/FedML-AI/FedML/tree/master/android/fedmlsdk)/MobileNN/, and I see the line below:

    run ./test_arm_android_64.sh, which will push demo.out to your android device and execute it.

    however,i can not find the test_arm_android_64.sh in the repo? Could you please check the issue?

    opened by T122D002L 0
  • (fednlp) When executed run_ simulation.sh in text_classification, the mpi has a problem

    (fednlp) When executed run_ simulation.sh in text_classification, the mpi has a problem

    image I have already installed mpi4py3.1.4 and libopenmpi-dev,and the Ubuntu is 18。I searched a lot of posts on the Internet, but I couldn't figure it out。

    opened by sxc225 0
  • How to run hierarchical_fedavg_mnist_lr_example on Raspberry Pi 4

    How to run hierarchical_fedavg_mnist_lr_example on Raspberry Pi 4

    https://doc.fedml.ai/cross-silo/examples/mqtt_s3_fedavg_hierarchical_mnist_lr_example.html

    Hi,@chaoyanghe I refer to the URL above The server uses ubuntu 22.04LTS+RTX2080ti Both silo1 and server are executed on ubuntu

    silo2 executes on Raspberry Pi 4 + 64bit OS But the raspberry pie has no GPU, and the mapping gpu has been changed to false What else needs to be modified?

    Thank you for your reply 2022-12-13 01 44 47

    opened by LCH517 0
  • custom criteria support; custom trainer support; better warning info.

    custom criteria support; custom trainer support; better warning info.

    Allow use of custom criteria of client trainer for classification task; allow custom client trainer for single process simulation; better exception info and hint for these two condition.

    opened by chengza 1
  • How do different algorithms work?

    How do different algorithms work?

    Hello,I want to ask for a help: In the "main_fedml_image_segmentation. py" file of the fedcv module, "SegmentationTrainer. py" and "SegmentationAggregator. py" under the "image_segmentation/trainer" module are imported during training. Suppose I modify different algorithms in "fedml_config. yaml", such as FedAvg, FedOpt, FedProx, but still use the same SegmentationTrainer and SegmentationAggregator, without any difference? How should different algorithms be implemented? In fedcv/segmentation, how do the algorithms in fedml/simulation/mpi work? They are all the same?

    opened by caozhantao 1
  • fedgraphnn only support MPI?

    fedgraphnn only support MPI?

    Hello, I tried to change the common args from 'backend:MPI' to 'backend:sp' in ego_network_node_clf, and it failed. So I wonder if fedgraphnn only support MPI. If not, how can i adjust the config parameter, thanks!

    opened by MaoPopovich 2
Releases(fedml_v0.6_before_fundraising)
Owner
FedML-AI
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML-AI
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022