[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

Overview

DSM

The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion

Project Website;

Datasets list and some visualizations/provided weights are preparing now.

1. Introduction (scene-dominated to motion-dominated)

Video datasets are usually scene-dominated, We propose to decouple the scene and the motion (DSM) with two simple operations, so that the model attention towards the motion information is better paid.

The generated triplet is as below:

What DSM learned?

With DSM pretrain, the model learn to focus on motion region (Not necessarily actor) powerful without one label available.

2. Installation

Dataset

Please refer dataset.md for details.

Requirements

  • Python3
  • pytorch1.1+
  • PIL
  • Intel (on the fly decode)

3. Structure

  • datasets
    • list
      • hmdb51: the train/val lists of HMDB51
      • ucf101: the train/val lists of UCF101
      • kinetics-400: the train/val lists of kinetics-400
      • diving48: the train/val lists of diving48
  • experiments
    • logs: experiments record in detials
    • gradientes: grad check
    • visualization:
  • src
    • data: load data
    • loss: the loss evaluate in this paper
    • model: network architectures
    • scripts: train/eval scripts
    • augment: detail implementation of Spatio-temporal Augmentation
    • utils
    • feature_extract.py: feature extractor given pretrained model
    • main.py: the main function of finetune
    • trainer.py
    • option.py
    • pt.py: self-supervised pretrain
    • ft.py: supervised finetune

DSM(Triplet)/DSM/Random

Self-supervised Pretrain

Kinetics
bash scripts/kinetics/pt.sh
UCF101
bash scripts/ucf101/pt.sh

Supervised Finetune (Clip-level)

HMDB51
bash scripts/hmdb51/ft.sh
UCF101
bash scripts/ucf101/ft.sh
Kinetics
bash scripts/kinetics/ft.sh

Video-level Evaluation

Following common practice TSN and Non-local. The final video-level result is average by 10 temporal window sampling + corner crop, which lead to better result than clip-level. Refer test.py for details.

Pretrain And Eval In one step

bash scripts/hmdb51/pt_and_ft_hmdb51.sh

Notice: More Training Options and ablation study Can be find in scripts

Video Retrieve and other visualization

(1). Feature Extractor

As STCR can be easily extend to other video representation task, we offer the scripts to perform feature extract.

python feature_extractor.py

The feature will be saved as a single numpy file in the format [video_nums,features_dim] for further visualization.

(2). Reterival Evaluation

modify line60-line62 in reterival.py.

python reterival.py

Results

Action Recognition

UCF101 Pretrained (I3D)

Method UCF101 HMDB51
Random Initialization 47.9 29.6
MoCo Baseline 62.3 36.5
DSM(Triplet) 70.7 48.5
DSM 74.8 52.5

Kinetics Pretrained

Video Retrieve (UCF101-C3D)

Method @1 @5 @10 @20 @50
DSM 16.8 33.4 43.4 54.6 70.7

Video Retrieve (HMDB51-C3D)

Method @1 @5 @10 @20 @50
DSM 8.2 25.9 38.1 52.0 75.0

More Visualization

Acknowledgement

This work is partly based on STN, UEL and MoCo.

License

Citation

If you use our code in your research or wish to refer to the baseline results, pleasuse use the followint BibTex entry.

@inproceedings{wang2020enhancing,
  author    = {Lin, Ji and Zhang, Richard and Ganz, Frieder and Han, Song and Zhu, Jun-Yan},
  title     = {Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion},
  booktitle = {AAAI},
  year      = {2021},
}
Owner
Jinpeng Wang
Focus on Biometrics and Video Understanding, Self/Semi Supervised Learning.
Jinpeng Wang
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022