Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Related tags

Deep Learningvnn
Overview

Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas Guibas.

We introduce a general framework built on top of what we call Vector Neurons for creating SO(3) equivariant neural networks. Extending neurons from single scalars to 3D vectors, our vector neurons transport SO(3) actions to latent spaces and provide a framework for building equivariance in common neural operations including linear layers, non-linearities, pooling, and normalization.

[Project] [Paper]

Overview

vnn is the author's implementation of Vector Neuron Networks with PointNet and DGCNN backbones. The current version only supports input data without normals.

      

Data Preparation

  • Classification: Download ModelNet40 and save in data/modelnet40_normal_resampled/.
  • Part Segmentation: Download ShapeNet and save in data/shapenetcore_partanno_segmentation_benchmark_v0_normal/.

Usage

Classification on ModelNet40

Training

python train_cls.py --model vn_pointnet_cls --rot ROTATION --log_dir LOG_DIR
python train_cls.py --model vn_dgcnn_cls --rot ROTATION --log_dir LOG_DIR

Evaluation

python test_cls.py --model vn_pointnet_cls --rot ROTATION --log_dir LOG_DIR
python test_cls.py --model vn_dgcnn_cls --rot ROTATION --log_dir LOG_DIR

Here ROTATION should be chosen from aligned, z, so3. For instance, to train a VN-DGCNN on aligned shapes and test it on SO(3)-rotated shapes, run

python train_cls.py --model vn_dgcnn_cls --rot aligned --log_dir vn_dgcnn/aligned/
python test_cls.py --model vn_dgcnn_cls --rot so3 --log_dir vn_dgcnn/aligned/

Part Segmentation on ShapeNet

Training

python train_partseg.py --model vn_pointnet_partseg --rot ROTATION --log_dir LOG_DIR
python train_partseg.py --model vn_dgcnn_partseg --rot ROTATION --log_dir LOG_DIR

Evaluation

python test_partseg.py --model vn_pointnet_partseg --rot ROTATION --log_dir LOG_DIR
python test_partseg.py --model vn_dgcnn_partseg --rot ROTATION --log_dir LOG_DIR

For instance, to train a VN-DGCNN on aligned shapes and test it on SO(3)-rotated shapes, run

python train_partseg.py --model vn_dgcnn_partseg --rot aligned --log_dir vn_dgcnn/aligned/
python test_partseg.py --model vn_dgcnn_partseg --rot so3 --log_dir vn_dgcnn/aligned/

Citation

Please cite this paper if you want to use it in your work,

@misc{deng2021vn,
  title={Vector Neurons: a general framework for SO(3)-equivariant networks},
  author={Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, Leonidas Guibas},
  year={2021},
  booktitle={arXiv (link available soon)}
} 

License

MIT License

Acknowledgement

The structure of this codebase is borrowed from this pytorch implementataion of PointNet/PointNet++ and DGCNN.

Owner
Congyue Deng
CS PhD student at Stanford, advised by Leonidas Guibas | Previous: math undergrad at Tsinghua
Congyue Deng
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022