NL-Augmenter ๐ŸฆŽ โ†’ ๐Ÿ A Collaborative Repository of Natural Language Transformations

Overview

NL-Augmenter ๐ŸฆŽ โ†’ ๐Ÿ

The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformations augment text datasets in diverse ways, including: introducing spelling errors, translating to a different language, randomizing names and numbers, paraphrasingย ... and whatever creative augmentation you contribute to the benchmark. We invite submissions of transformations to this framework by way of GitHub pull request, through September 1, 2021. All submitters of accepted transformations (and filters) will be included as co-authors on a paper announcing this framework.

The framework organizers can be contacted at [email protected].

Submission timeline

Due date Description
September 1, 2021 Pull request must be opened to be eligible for inclusion in the framework and associated paper
September 22, 2021 Review process for pull request above must be complete

A transformation can be revised between the pull request submission and pull request merge deadlines. We will provide reviewer feedback to help with the revisions.

The transformations which are already accepted to NL-Augmenter are summarized in this table. Transformations undergoing review can be seen as pull requests.

Table of contents

Colab notebook

Open In Colab To quickly see transformations and filters in action, run through our colab notebook.

Installation

Requirements

  • Python 3.7

Instructions

# When creating a new transformation, replace this with your forked repository (see below)
git clone https://github.com/GEM-benchmark/NL-Augmenter.git
cd NL-Augmenter
python setup.py sdist
pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz

How do I create a transformation?

Setup

First, fork the repository in GitHub! ๐Ÿด

fork button

Your fork will have its own location, which we will call PATH_TO_YOUR_FORK. Next, clone the forked repository and create a branch for your transformation, which here we will call my_awesome_transformation:

git clone $PATH_TO_YOUR_FORK
cd NL-Augmenter
git checkout -b my_awesome_transformation

We will base our transformation on an existing example. Create a new transformation directory by copying over an existing transformation:

cd transformations/
cp -r butter_fingers_perturbation my_awesome_transformation
cd my_awesome_transformation

Creating a transformation

  1. In the file transformation.py, rename the class ButterFingersPerturbation to MyAwesomeTransformation and choose one of the interfaces from the interfaces/ folder. See the full list of options here.
  2. Now put all your creativity in implementing the generate method. If you intend to use external libraries, add them with their version numbers in requirements.txt
  3. Update my_awesome_transformation/README.md to describe your transformation.

Testing and evaluating (Optional)

Once you are done, add at least 5 example pairs as test cases in the file test.json so that no one breaks your code inadvertently.

Once the transformation is ready, test it:

pytest -s --t=my_awesome_transformation

If you would like to evaluate your transformation against a common ๐Ÿค— HuggingFace model, we encourage you to check evaluation

Code Styling To standardized the code we use the black code formatter which will run at the time of pre-commit. To use the pre-commit hook, install pre-commit with pip install pre-commit (should already be installed if you followed the above instructions). Then run pre-commit install to install the hook. On future commits, you should see the black code formatter is run on all python files you've staged for commit.

Submitting

Once the tests pass and you are happy with the transformation, submit them for review. First, commit and push your changes:

git add transformations/my_awesome_transformation/*
git commit -m "Added my_awesome_transformation"
git push --set-upstream origin my_awesome_transformation

Finally, submit a pull request. The last git push command prints a URL that can be copied into a browser to initiate such a pull request. Alternatively, you can do so from the GitHub website.

pull request button

โœจ Congratulations, you've submitted a transformation to NL-Augmenter! โœจ

How do I create a filter?

We also accept pull-requests for creating filters which identify interesting subpopulations of a dataset. The process to add a new filter is just the same as above. All filter implementations require implementing .filter instead of .generate and need to be placed in the filters folder. So, just the way transformations can transform examples of text, filters can identify whether an example follows some pattern of text! The only difference is that while transformations return another example of the same input format, filters simply return True or False! For step-by-step instructions, follow these steps.

Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
novel deep learning research works with PaddlePaddle

Research ๅ‘ๅธƒๅŸบไบŽ้ฃžๆกจ็š„ๅ‰ๆฒฟ็ ”็ฉถๅทฅไฝœ๏ผŒๅŒ…ๆ‹ฌCVใ€NLPใ€KGใ€STDM็ญ‰้ข†ๅŸŸ็š„้กถไผš่ฎบๆ–‡ๅ’Œๆฏ”่ต›ๅ† ๅ†›ๆจกๅž‹ใ€‚ ็›ฎๅฝ• ่ฎก็ฎ—ๆœบ่ง†่ง‰(Computer Vision) ่‡ช็„ถ่ฏญ่จ€ๅค„็†(Natrual Language Processing) ็Ÿฅ่ฏ†ๅ›พ่ฐฑ(Knowledge Graph) ๆ—ถ็ฉบๆ•ฐๆฎๆŒ–ๆŽ˜(Spa

1.5k Jan 03, 2023
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
๋ฌธ์žฅ๋‹จ์œ„๋กœ ๋ถ„์ ˆ๋œ ๋‚˜๋ฌด์œ„ํ‚ค ๋ฐ์ดํ„ฐ์…‹. Releases์—์„œ ๋‹ค์šด๋กœ๋“œ ๋ฐ›๊ฑฐ๋‚˜, tfds-korean์„ ํ†ตํ•ด ๋‹ค์šด๋กœ๋“œ ๋ฐ›์œผ์„ธ์š”.

Namuwiki corpus ๋ฌธ์žฅ๋‹จ์œ„๋กœ ๋ฏธ๋ฆฌ ๋ถ„์ ˆ๋œ ๋‚˜๋ฌด์œ„ํ‚ค ์ฝ”ํผ์Šค. ๋ชฉ์ ์ด LM๋“ฑ์—์„œ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•œ ๋ฐ์ดํ„ฐ์…‹์ด๋ผ, ๋งํฌ/์ด๋ฏธ์ง€/ํ…Œ์ด๋ธ” ๋“ฑ๋“ฑ์ด ์ž˜๋ ค์žˆ์Šต๋‹ˆ๋‹ค. ๋ฌธ์žฅ ๋‹จ์œ„ ๋ถ„์ ˆ์€ kss๋ฅผ ํ™œ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋ผ์ด์„ ์Šค๋Š” ๋‚˜๋ฌด์œ„ํ‚ค์— ๋ช…์‹œ๋œ ๋ฐ”์™€ ๊ฐ™์ด CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions ๐ŸŽ‡ Check collection of public projects ๐ŸŽ , where you can find multiple

minerva.ml 153 Jun 22, 2022
Prompt tuning toolkit for GPT-2 and GPT-Neo

mkultra mkultra is a prompt tuning toolkit for GPT-2 and GPT-Neo. Prompt tuning injects a string of 20-100 special tokens into the context in order to

61 Jan 01, 2023
A desktop GUI providing an audio interface for GPT3.

Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven

16 Nov 27, 2022
ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension

ThinkTwice ThinkTwice is a retriever-reader architecture for solving long-text machine reading comprehension. It is based on the paper: ThinkTwice: A

Walle 4 Aug 06, 2021
Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

Aji Priyo Wibowo 5 Aug 25, 2022
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
Spokestack is a library that allows a user to easily incorporate a voice interface into any Python application with a focus on embedded systems.

Welcome to Spokestack Python! This library is intended for developing voice interfaces in Python. This can include anything from Raspberry Pi applicat

Spokestack 133 Sep 20, 2022
Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A

Amazon 69 Jan 03, 2023
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration ๐Ÿšƒ

This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor

Princeton Natural Language Processing 92 Dec 27, 2022
Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022