Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Overview

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer

arXiv

Description

Convert offline handwritten mathematical expression to LaTeX sequence using bidirectionally trained transformer.

How to run

First, install dependencies

# clone project   
git clone https://github.com/Green-Wood/BTTR

# install project   
cd BTTR
conda create -y -n bttr python=3.7
conda activate bttr
conda install --yes -c pytorch pytorch=1.7.0 torchvision cudatoolkit=<your-cuda-version>
pip install -e .   

Next, navigate to any file and run it. It may take 6~7 hours to coverage on 4 gpus using ddp.

# module folder
cd BTTR

# train bttr model using 4 gpus and ddp
python train.py --config config.yaml  

For single gpu user, you may change the config.yaml file to

gpus: 1
# gpus: 4
# accelerator: ddp

Imports

This project is setup as a package which means you can now easily import any file into any other file like so:

from bttr.datamodule import CROHMEDatamodule
from bttr import LitBTTR
from pytorch_lightning import Trainer

# model
model = LitBTTR()

# data
dm = CROHMEDatamodule(test_year=test_year)

# train
trainer = Trainer()
trainer.fit(model, datamodule=dm)

# test using the best model!
trainer.test(datamodule=dm)

Note

Metrics used in validation is not accurate.

For more accurate metrics:

  1. use test.py to generate result.zip
  2. download and install crohmelib, lgeval, and tex2symlg tool.
  3. convert tex file to symLg file using tex2symlg command
  4. evaluate two folder using evaluate command

Citation

@article{zhao2021handwritten,
  title={Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer},
  author={Zhao, Wenqi and Gao, Liangcai and Yan, Zuoyu and Peng, Shuai and Du, Lin and Zhang, Ziyin},
  journal={arXiv preprint arXiv:2105.02412},
  year={2021}
}
Comments
  • can you provide predict.py code?

    can you provide predict.py code?

    Hi ~ @Green-Wood.

    I feel grateful mind for your help. I wanna get predict.py code that prints latex from an input image. If this code is provided, it will be very useful to others as well.

    Best regards.

    opened by ai-motive 17
  • val_exprate=0 and save checkpoint

    val_exprate=0 and save checkpoint

    hello!thanks for your time! When I transfer some code in decoder or use it directly,the val_exprate are always be 0.000,I don't know why. Another problem is,I noticed that this code don't have the function to save checkpoint or something.Can you give me some help?Thanks again!

    opened by Ashleyyyi 6
  • Val_exprate = 0

    Val_exprate = 0

    When I retrained the model according to the instruction, the val_exprate was always 0.00, did anyone encounter this problem, thank you! (I has not modified any codes) @Green-Wood

    opened by qingqianshuying 4
  • test.py error occurs

    test.py error occurs

    When I run test.py code, the following error occurs. Can i get some helps?

    in test.py code test_year = "2016" ckp_path = "pretrained model"

    GPU available: True, used: True
    TPU available: False, using: 0 TPU cores
    Load data from: /home/motive/PycharmProjects/BTTR/bttr/datamodule/../../data.zip
    Extract data from: 2016, with data size: 1147
    total  1147 batch data loaded
    LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
    Testing: 100%|██████████| 1147/1147 [07:34<00:00,  2.01s/it]ExpRate: 0.32258063554763794
    length of total file: 1147
    Testing: 100%|██████████| 1147/1147 [07:34<00:00,  2.52it/s]
    --------------------------------------------------------------------------------
    DATALOADER:0 TEST RESULTS
    {}
    --------------------------------------------------------------------------------
    Traceback (most recent call last):
      File "/home/motive/PycharmProjects/BTTR/test.py", line 17, in <module>
        trainer.test(model, datamodule=dm)
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 579, in test
        results = self._run(model)
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 759, in _run
        self.post_dispatch()
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 789, in post_dispatch
        self.accelerator.teardown()
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/pytorch_lightning/accelerators/gpu.py", line 51, in teardown
        self.lightning_module.cpu()
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/pytorch_lightning/utilities/device_dtype_mixin.py", line 141, in cpu
        return super().cpu()
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/torch/nn/modules/module.py", line 471, in cpu
        return self._apply(lambda t: t.cpu())
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/torch/nn/modules/module.py", line 359, in _apply
        module._apply(fn)
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/torchmetrics/metric.py", line 317, in _apply
        setattr(this, key, [fn(cur_v) for cur_v in current_val])
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/torchmetrics/metric.py", line 317, in <listcomp>
        setattr(this, key, [fn(cur_v) for cur_v in current_val])
      File "/home/motive/anaconda3/envs/bttr/lib/python3.7/site-packages/torch/nn/modules/module.py", line 471, in <lambda>
        return self._apply(lambda t: t.cpu())
    AttributeError: 'tuple' object has no attribute 'cpu'
    
    opened by ai-motive 3
  • How long does BTTR take to train?

    How long does BTTR take to train?

    Hi, thank you for great repository!

    How long does it take to train for your experiment in the paper? I mean training on CROHME 2014/2016/2019 on four NVIDIA 1080Ti GPUs.

    Thanks,

    opened by RyosukeFukatani 2
  • can you provide transfer learning code?

    can you provide transfer learning code?

    Hi~ @Green-Wood

    I wanna apply trasnfer learning using pretrained model.

    but, LightningCLI() is wrapped and difficult to customize.

    Thanks & best regards.

    opened by ai-motive 1
  • How can it get pretrained model ?

    How can it get pretrained model ?

    Hi, I wanna test your BTTR model but, it need to training process which will take a lot of time. So, can you give me a pretrained model link?

    Best regards.

    opened by ai-motive 1
  • After adding new token in dictionary getting error .

    After adding new token in dictionary getting error .

    Hi , getting error after adding new token in dictionary.txt

    Error(s) in loading state_dict for LitBTTR: size mismatch for bttr.decoder.word_embed.0.weight: copying a param with shape torch.Size([113, 256]) from checkpoint, the shape in current model is torch.Size([115, 256]). size mismatch for bttr.decoder.proj.weight: copying a param with shape torch.Size([113, 256]) from checkpoint, the shape in current model is torch.Size([115, 256]). size mismatch for bttr.decoder.proj.bias: copying a param with shape torch.Size([113]) from checkpoint, the shape in current model is torch.Size([115]).

    Kindly help me out how can i fix this error.

    opened by shivankaraditi 0
  • About dataset

    About dataset

    Could you tell me how to generate the offline math expression image from inkml file? My experiment show that a large scale image could improve the result obviously,so I'd like to know if there is unified offline data for academic research.

    opened by lightflash7 0
  • predicting on gpu is slower

    predicting on gpu is slower

    Hi ,

    As this model is a bit slower compared to the existing state-of-the-art model on CPU. So I tried to make predictions on GPU and surprisingly it slower on Gpu compare to CPU as well.

    I am attaching a code snapshot here

    device = torch.device('cuda')if torch.cuda.is_available() else torch.device('cpu')

    model = LitBTTR.load_from_checkpoint('pretrained-2014.ckpt',map_location=device)

    img = Image.open(img_path) img = ToTensor()(img) img.to(device)

    t1 = time.time() hyp = model.beam_search(img) t2 = time.time()

    Kindly help me out here how i can reduce prediction time

    FYI - using GPU on aws g4dn.xlarge configuration machine

    opened by Suma3 1
  • how to use TensorBoard?

    how to use TensorBoard?

    hello i don't know how to add scalar to TensorBoard? I want to do this kind of topic, hoping to improve some ExpRate, but I don’t know much about lightning TensorBoard.

    opened by win5923 9
Releases(v2.0)
Owner
Wenqi Zhao
Student in Nanjing University
Wenqi Zhao
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022