基于Paddle框架的PSENet复现

Overview

PSENet-Paddle

基于Paddle框架的PSENet复现

本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待

AIStudio链接

参考项目:

whai362-PSENet

环境配置

本项目利用AIstudio平台,采用paddlepaddle: 2.0.2-gpu Version,除此之外你需要通过pip install mmcv editdistance Polygon3 pyclipper或者pip install -r requirement.txt来安装依赖包

数据集

本项目已搭载PSENet比赛指定数据集,你可以在此找到搭载的数据集,包含ICDAR2015 Task4以及Total-Text

工程目录

注意到你需要将submitPSENet重命名为PSENet

/home/aistudio/PSENet
|───data(解压的data.zip)
└───config
└───models
└───dataset
└───eval
└───utils
└───compile.sh
└───__init__.py
└───test.py
└───train.py
└───requirement.txt
└───logo.gif

项目配置**

注意:由于aistudio的docker环境并不适配本项目的编译,所以你需要在本地计算机编译完成后上传编译文件,在本地计算机我才用如下配置,你可以使用gcc --versiong++ --version查看配置

AIStudio Local PC
gcc (Ubuntu 7.5.0-3ubuntu1~16.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
g++ (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
g++ (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

可以发现AIStudio的g++版本不适配,注意:你需要相同的架构,系统以及python版本,(Ubuntu)linux-x86_64&python3.7

`./compile.sh` or `bash compile.sh` if come out bash: ./compile.sh: Permission denied

或者直接进入指定目录,手动编译

cd /home/aistudio/PSENet/models/post_processing/pse
python setup.py build_ext --inplace

编译完成后你会在/home/aistudio/PSENet/models/post_processing/pse得到build/temp.linux-x86_64-3.7/pse.o文件和pse.cpython-37m-x86_64-linux-gnu.so文件

注意:本项目已经全部配置完成,这一步无需操作

训练

需要注意的是,在paddlepaddle-2.0.2中并不支持字典数据读取,因此我在/home/aistudio/PSENet/utils/data_loader.py利用迭代器重写了DataLoader这拉慢了数据读取的速度,会导致训练速度略慢,例如在使用psenet_r50_ic15_1024_finetune.py训练一个epoch需要512.4秒,另外paddlepaddle2.0.2暂不支持Identity方法,因此我在/home/aistudio/PSENet/models/utils/fuse_conv_bn.py通过继承Paddle.nn.Layer写了Identity

cd /home/aistudio/PSENet/
python train.py ${CONFIG_FILE}

例如:

cd /home/aistudio/PSENet/
python train.py config/psenet/psenet_r50_ic15_736.py

训练开启时,会生成一个类似/home/aistudio/PSENet/checkpoints/psenet_r50_ic15_1024_finetune的文件夹,里面将保存权重和优化器参数

测试

cd /home/aistudio/PSENet/
python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}

例如:

cd /home/aistudio/PSENet/
python test.py config/psenet/psenet_r50_ic15_736.py PSENet/PretrainedModel/checkpoint_ic15_736.pdparams

评估

你需要注意的是:测试和评估是递进的,通过测试生成文件后,进行评估

ICDAR 2015

cd /home/aistudio/PSENet/eval
`./eval_ic15.sh` or `bash ./eval_ic15.sh`

你会得到如下类似信息:

Calculated!{"precision": 0.8620689655172413, "recall": 0.7944150216658642, "hmean": 0.826860435980957, "AP": 0}

以下是paddlepaddle预训练模型测试指标

Method Backbone Fine-tuning Scale Config Precision (%) Recall (%) F-measure (%) Model
PSENet ResNet50 N Shorter Side: 736 psenet_r50_ic15_736.py 83.6 74.0 78.5 checkpoint_ic15_736
PSENet ResNet50 N Shorter Side: 1024 psenet_r50_ic15_1024.py 84.4 76.3 80.2 checkpoint_ic15_1024
PSENet ResNet50 Y Shorter Side: 736 psenet_r50_ic15_736_finetune.py 85.3 76.8 80.9 checkpoint_ic15_736_finetune
PSENet ResNet50 Y Shorter Side: 1024 psenet_r50_ic15_1024_finetune.py 86.2 79.4 82.7 checkpoint_ic15_1024_finetune

Total-Text

Text detection

cd /home/aistudio/PSENet/eval
./eval_tt.sh or `bash ./eval_tt.sh`

你会得到如下类似信息:

Precision:_0.8727937336814604_______/Recall:_0.7786751361161512/Hmean:_0.8230524859472805

pb

以下是paddlepaddle预训练模型测试指标

Method Backbone Fine-tuning Config Precision (%) Recall (%) F-measure (%) Model
PSENet ResNet50 N psenet_r50_tt.py 87.3 77.9 82.3 checkpoint_tt
PSENet ResNet50 Y psenet_r50_tt_finetune.py 89.3 79.6 84.2 checkpoint_tt_finetune

速度测试

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --report_speed

例如:

cd /home/aistudio/PSENet/
python test.py config/psenet/psenet_r50_ic15_736.py PSENet/PretrainedModel/checkpoint_ic15_736.pdparams --report_speed

你会得到如下类似信息

Testing 283/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8
Testing 284/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8
Testing 285/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8
Testing 286/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8

Citation

@inproceedings{wang2019shape,
  title={Shape robust text detection with progressive scale expansion network},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9336--9345},
  year={2019}
}
Owner
QuanHao Guo
master at UESTC
QuanHao Guo
Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Dual Encoding for Video Retrieval by Text Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding

81 Dec 01, 2022
Code for the ACL2021 paper "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction"

CSCBLI Code for our ACL Findings 2021 paper, "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction". Require

Jinpeng Zhang 12 Oct 08, 2022
[python3.6] 运用tf实现自然场景文字检测,keras/pytorch实现ctpn+crnn+ctc实现不定长场景文字OCR识别

本文基于tensorflow、keras/pytorch实现对自然场景的文字检测及端到端的OCR中文文字识别 update20190706 为解决本项目中对数学公式预测的准确性,做了其他的改进和尝试,效果还不错,https://github.com/xiaofengShi/Image2Katex 希

xiaofeng 2.7k Dec 25, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
BD-ALL-DIGIT - This Is Bangladeshi All Sim Cloner Tools

BANGLADESHI ALL SIM CLONER TOOLS INSTALL TOOL ON TERMUX $ apt update $ apt upgra

MAHADI HASAN AFRIDI 2 Jan 19, 2022
Handwritten_Text_Recognition

Deep Learning framework for Line-level Handwritten Text Recognition Short presentation of our project Introduction Installation 2.a Install conda envi

24 Jul 15, 2022
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
Extract tables from scanned image PDFs using Optical Character Recognition.

ocr-table This project aims to extract tables from scanned image PDFs using Optical Character Recognition. Install Requirements Tesseract OCR sudo apt

Abhijeet Singh 209 Dec 06, 2022
The official code for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates".

SpeechDrivesTemplates The official repo for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates". [arxiv

Qian Shenhan 53 Dec 23, 2022
A tool to make dumpy among us GIFS

Among Us Dumpy Gif Maker Made by ThatOneCalculator & Pixer415 With help from Telk, karl-police, and auguwu! Please credit this repository when you use

Kainoa Kanter 535 Jan 07, 2023
caffe re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection

R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection Abstract This is a caffe re-implementation of R2CNN: Rotational Region CNN fo

candler 80 Dec 28, 2021
APS 6º Semestre - UNIP (2021)

UNIP - Universidade Paulista Ciência da Computação (CC) DESENVOLVIMENTO DE UM SISTEMA COMPUTACIONAL PARA ANÁLISE E CLASSIFICAÇÃO DE FORMAS Link do git

Eduardo Talarico 5 Mar 09, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 02, 2023
Introduction to image processing, most used and popular functions of OpenCV

👀 OpenCV 101 Introduction to image processing, most used and popular functions of OpenCV go here.

Vusal Ismayilov 3 Jul 02, 2022
零样本学习测评基准,中文版

ZeroCLUE 零样本学习测评基准,中文版 零样本学习是AI识别方法之一。 简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别, 还可以对于来自未见过的类别的数据进行区分。 这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据, 很符合现

CLUE benchmark 27 Dec 10, 2022
Um RPG de texto orientado a objetos.

RPG de texto Um RPG de texto orientado a objetos, sem história. Um RPG (Role-playing game) baseado em texto em que você pode viajar para alguns locais

Vinicius 3 Oct 05, 2022
A selectional auto-encoder approach for document image binarization

The code of this repository was used for the following publication. If you find this code useful please cite our paper: @article{Gallego2019, title =

Javier Gallego 89 Nov 18, 2022
This pyhton script converts a pdf to Image then using tesseract as OCR engine converts Image to Text

Script_Convertir_PDF_IMG_TXT Este script de pyhton convierte un pdf en Imagen luego utilizando tesseract como motor OCR convierte la Imagen a Texto. p

alebogado 1 Jan 27, 2022
An organized collection of tutorials and projects created for aspriring computer vision students.

A repository created with the purpose of teaching students in BME lab 308A- Hanoi University of Science and Technology

Givralnguyen 5 Nov 24, 2021
Captcha Recognition

The objective of this project is to recognize the target numbers in the captcha images correctly which would tell us how good or bad a captcha system has been built.

Mohit Kaushik 5 Feb 20, 2022