Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

Related tags

Deep LearningCAPTRA
Overview

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

teaser

Introduction

This is the official PyTorch implementation of our paper CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds. This repository is still under construction.

For more information, please visit our project page.

Result visualization on real data. Our models, trained on synthetic data only, can directly generalize to real data, assuming the availability of object masks but not part masks. Left: results on a laptop trajectory from BMVC dataset. Right: results on a real drawers trajectory we captured, where a Kinova Jaco2 arm pulls out the top drawer.

Citation

If you find our work useful in your research, please consider citing:

@article{weng2021captra,
	title={CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds},
	author={Weng, Yijia and Wang, He and Zhou, Qiang and Qin, Yuzhe and Duan, Yueqi and Fan, Qingnan and Chen, Baoquan and Su, Hao and Guibas, Leonidas J},
	journal={arXiv preprint arXiv:2104.03437},
	year={2021}

Updates

  • [2021/04/14] Released code, data, and pretrained models for testing & evaluation.

Installation

  • Our code has been tested with

    • Ubuntu 16.04, 20.04, and macOS(CPU only)
    • CUDA 11.0
    • Python 3.7.7
    • PyTorch 1.6.0
  • We recommend using Anaconda to create an environment named captra dedicated to this repository, by running the following:

    conda env create -n captra python=3.7
    conda activate captra
  • Create a directory for code, data, and experiment checkpoints.

    mkdir captra && cd captra
  • Clone the repository

    git clone https://github.com/HalfSummer11/CAPTRA.git
    cd CAPTRA
  • Install dependencies.

    pip install -r requirements.txt
  • Compile the CUDA code for PointNet++ backbone.

    cd network/models/pointnet_lib
    python setup.py install

Datasets

  • Create a directory for all datasets under captra

    mkdir data && cd data
    • Make sure to point basepath in CAPTRA/configs/obj_config/obj_info_*.yml to your dataset if you put it at a different location.

NOCS-REAL275

mkdir nocs_data && cd nocs_data

Test

  • Download and unzip nocs_model_corners.tar, where the 3D bounding boxes of normalized object models are saved.

    wget http://download.cs.stanford.edu/orion/captra/nocs_model_corners.tar
    tar -xzvf nocs_real_corners.tar
  • Create nocs_full to hold original NOCS data. Download and unzip "Real Dataset - Test" from the original NOCS dataset, which contains 6 real test trajectories.

    mkdir nocs_full && cd nocs_full
    wget http://download.cs.stanford.edu/orion/nocs/real_test.zip
    unzip real_test.zip
  • Generate and run the pre-processing script

    cd CAPTRA/datasets/nocs_data/preproc_nocs
    python generate_all.py --data_path ../../../../data/nocs_data --data_type=test_only --parallel --num_proc=10 > nocs_preproc.sh # generate the script for data preprocessing
    # parallel & num_proc specifies the number of parallel processes in the following procedure
    bash nocs_preproc.sh # the actual data preprocessing
  • After the steps above, the folder should look like File Structure - Dataset Folder Structure.

SAPIEN Synthetic Articulated Object Dataset

mkdir sapien_data && cd sapien_data

Test

  • Download and unzip object URDF models and testing trajectories

    wget http://download.cs.stanford.edu/orion/captra/sapien_urdf.tar
    wget http://download.cs.stanford.edu/orion/captra/sapien_test.tar
    tar -xzvf sapien_urdf.tar
    tar -xzvf sapien_test.tar

Testing & Evaluation

Download Pretrained Model Checkpoints

  • Create a folder runs under captra for experiments

    mkdir runs && cd runs
  • Download our pretrained model checkpoints for

  • Unzip them in runs

    tar -xzvf nocs_ckpt.tar  

    which should give

    runs
    ├── 1_bottle_rot 	# RotationNet for the bottle category
    ├── 1_bottle_coord 	# CoordinateNet for the bottle category
    ├── 2_bowl_rot 
    └── ...

Testing

  • To generate pose predictions for a certain category, run the corresponding script in CAPTRA/scripts (without further specification, all scripts are run from CAPTRA), e.g. for the bottle category from NOCS-REAL275,

    bash scripts/track/nocs/1_bottle.sh
  • The predicted pose will be saved under the experiment folder 1_bottle_rot (see File Structure - Experiment Folder Structure).

  • To test the tracking speed for articulated objects in SAPIEN, make sure to set --batch_size=1 in the script. You may use --dataset_length=500 to avoid running through the whole test set.

Evaluation

  • To evaluate the pose predictions produced in the previous step, uncomment and run the corresponding line in CAPTRA/scripts/eval.sh, e.g. for the bottle category from NOCS-REAL275, the corresponding line is

    python misc/eval/eval.py --config config_track.yml --obj_config obj_info_nocs.yml --obj_category=1 --experiment_dir=../runs/1_bottle_rot

File Structure

Overall Structure

The working directory should be organized as follows.

captra
├── CAPTRA		# this repository
├── data			# datasets
│   ├── nocs_data		# NOCS-REAL275
│   └── sapien_data	# synthetic dataset of articulated objects from SAPIEN
└── runs			# folders for individual experiments
    ├── 1_bottle_coord
    ├── 1_bottle_rot
    └── ...

Code Structure

Below is an overview of our code. Only the most relevant folders/files are shown.

CAPTRA
├── configs		# configuration files
│   ├── all_config		# experiment configs
│   ├── pointnet_config 	# pointnet++ configs (radius, etc)
│   ├── obj_config		# dataset configs
│   └── config.py		# parser
├── datasets	# data preprocessing & dataset definitions
│   ├── arti_data		# articulated data
│   │   └── ...
│   ├── nocs_data		# NOCS-REAL275 data
│   │   ├── ...
│   │   └── preproc_nocs	# prepare nocs data
│   └── ...			# utility functions
├── pose_utils		# utility functions for pose/bounding box computation
├── utils.py
├── misc		# evaluation and visualization
│   ├── eval
│   └── visualize
├── scripts		# scripts for training/testing
└── network		# main part
    ├── data		# torch dataloader definitions
    ├── models		# model definition
    │   ├── pointnet_lib
    │   ├── pointnet_utils.py
    │   ├── backbones.py
    │   ├── blocks.py		# the above defines backbone/building blocks
    │   ├── loss.py
    │   ├── networks.py		# defines CoordinateNet and RotationNet
    │   └── model.py		# defines models for training/tracking
    ├── trainer.py	# training agent
    ├── parse_args.py		# parse arguments for train/test
    ├── test.py		# test
    ├── train.py	# train
    └── train_nocs_mix.py	# finetune with a mixture of synthetic/real data

Experiment Folder Structure

For each experiment, a dedicated folder in captra/runs is organized as follows.

1_bottle_rot
├── log		# training/testing log files
│   └── log.txt
├── ckpt	# model checkpoints
│   ├── model_0001.pt
│   └── ...
└── results
    ├── data*		# per-trajectory raw network outputs 
    │   ├── bottle_shampoo_norm_scene_4.pkl
    │   └── ...
    ├── err.csv**	# per-frame error	
    └── err.pkl**	# per-frame error
*: generated after testing with --save
**: generated after running misc/eval/eval.py

Dataset Folder Structure

nocs_data
├── nocs_model_corners		# instance bounding box information	
├── nocs_full		 	# original NOCS data, organized in frames (not object-centric)
│   ├── real_test
│   │   ├── scene_1
│   │   └── ...
│   ├── real_train
│   ├── train
│   └── val			
├── instance_list*		# collects each instance's occurences in nocs_full/*/
├── render*			# per-instance segmented data for training
├── preproc**			# cashed data 	
└── splits**			# data lists for train/test	
*: generated after data-preprocessing
**: generated during training/testing

sapien_data
├── urdf			# instance URDF models
├── render_seq			# testing trajectories
├── render**			# single-frame training/validation data
├── preproc_seq*		# cashed testing trajectory data	
├── preproc**			# cashed testing trajectory data
└── splits*			# data lists for train/test	
*: generated during training/testing
**: training

Acknowledgements

This implementation is based on the following repositories. We thank the authors for open sourcing their great works!

Owner
Yijia Weng
Another day, another destiny.
Yijia Weng
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022