Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Overview

Semantic-NeRF: Semantic Neural Radiance Fields

Project Page | Video | Paper | Data

In-Place Scene Labelling and Understanding with Implicit Scene Representation
Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, Andrew J. Davison,
Dyson Robotics Laboratory at Imperial College
Published in ICCV 2021 (Oral Presentation)

We build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF.

Getting Started

For flawless reproduction of our results, the Ubuntu OS 20.04 is recommended. The models have been tested using Python 3.7, Pytorch 1.6.0, CUDA10.1. Higher versions should also perform similarly.

Dependencies

Main python dependencies are listed below:

  • Python >=3.7
  • torch>=1.6.0 (integrate searchsorted API, otherwise need to use the third party implementation SearchSorted)
  • cudatoolkit>=10.1

Following packages are used for 3D mesh reconstruction:

  • trimesh==3.9.9
  • open3d==0.12.0

With Anaconda, you can simply create a virtual environment and install dependencies with CONDA by:

  • conda create -n semantic_nerf python=3.7
  • conda activate semantic_nerf
  • pip install -r requirements.txt

Datasets

We mainly use Replica and ScanNet datasets for experiments, where we train a new Semantic-NeRF model on each 3D scene. Other similar indoor datasets with colour images, semantic labels and poses can also be used.

We also provide pre-rendered Replica data that can be directly used by Semantic-NeRF.

Running code

After cloning the codes, we can start to run Semantic-NeRF in the root directory of the repository.

Semantic-NeRF training

For standard Semantic-NeRF training with full dense semantic supervision. You can simply run following command with a chosen config file specifying data directory and hyper-params.

python3 train_SSR_main.py --config_file /SSR/configs/SSR_room0_config.yaml

Different working modes and set-ups can be chosen via commands:

Semantic View Synthesis with Sparse Labels:

python3 train_SSR_main.py --sparse_views --sparse_ratio 0.6

Sparse ratio here is the portion of dropped frames in the training sequence.

Pixel-wise Denoising Task:

python3 train_SSR_main.py --pixel_denoising --pixel_noise_ratio 0.5

We could also use a sparse set of frames along with denoising task:

python3 train_SSR_main.py --pixel_denoising --pixel_noise_ratio 0.5 --sparse_views --sparse_ratio 0.6

Region-wise Denoising task (For Replica Room2):

python3 train_SSR_main.py --region_denoising --region_noise_ratio 0.3

The argument uniform_flip corresponds to the two modes of "Even/Sort"in region-wise denoising task.

Super-Resolution Task:

For super-resolution with dense labels, please run

python3 train_SSR_main.py --super_resolution --sr_factor 8 --dense_sr

For super-resolution with sparse labels, please run

python3 train_SSR_main.py --super_resolution --sr_factor 8

Label Propagation Task:

For label propagation task with single-click seed regions, please run

python3 train_SSR_main.py --label_propagation --partial_perc 0

In order to improve reproducibility, for denoising and label-propagation tasks, we can also include --visualise_save and --load_saved to save/load randomly generated labels.

3D Reconstruction of Replica Scenes

We also provide codes for extracting 3D semantic mesh from a trained Seamntic-NeRF model.

python3 SSR/extract_colour_mesh.py --sem --mesh_dir PATH_TO_MESH --mesh_dir PATH_TO_MESH  --training_data_dir PATH_TO_TRAINING_DATA --save_dir PATH_TO_SAVE_DIR

For more demos and qualitative results, please check our project page and video.

Acknowledgements

Thanks nerf, nerf-pytorch and nerf_pl for providing nice and inspiring implementations of NeRF.

Citation

If you found this code/work to be useful in your own research, please consider citing the following:

@inproceedings{Zhi:etal:ICCV2021,
  title={In-Place Scene Labelling and Understanding with Implicit Scene Representation},
  author={Shuaifeng Zhi and Tristan Laidlow and Stefan Leutenegger and Andrew J. Davison},
  booktitle=ICCV,
  year={2021}
}

Contact

If you have any questions, please contact [email protected] or [email protected].

Owner
Shuaifeng Zhi
PhD student in Dyson Robotics Laboratory at Imperial College London
Shuaifeng Zhi
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022