Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Overview

Semantic-NeRF: Semantic Neural Radiance Fields

Project Page | Video | Paper | Data

In-Place Scene Labelling and Understanding with Implicit Scene Representation
Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, Andrew J. Davison,
Dyson Robotics Laboratory at Imperial College
Published in ICCV 2021 (Oral Presentation)

We build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF.

Getting Started

For flawless reproduction of our results, the Ubuntu OS 20.04 is recommended. The models have been tested using Python 3.7, Pytorch 1.6.0, CUDA10.1. Higher versions should also perform similarly.

Dependencies

Main python dependencies are listed below:

  • Python >=3.7
  • torch>=1.6.0 (integrate searchsorted API, otherwise need to use the third party implementation SearchSorted)
  • cudatoolkit>=10.1

Following packages are used for 3D mesh reconstruction:

  • trimesh==3.9.9
  • open3d==0.12.0

With Anaconda, you can simply create a virtual environment and install dependencies with CONDA by:

  • conda create -n semantic_nerf python=3.7
  • conda activate semantic_nerf
  • pip install -r requirements.txt

Datasets

We mainly use Replica and ScanNet datasets for experiments, where we train a new Semantic-NeRF model on each 3D scene. Other similar indoor datasets with colour images, semantic labels and poses can also be used.

We also provide pre-rendered Replica data that can be directly used by Semantic-NeRF.

Running code

After cloning the codes, we can start to run Semantic-NeRF in the root directory of the repository.

Semantic-NeRF training

For standard Semantic-NeRF training with full dense semantic supervision. You can simply run following command with a chosen config file specifying data directory and hyper-params.

python3 train_SSR_main.py --config_file /SSR/configs/SSR_room0_config.yaml

Different working modes and set-ups can be chosen via commands:

Semantic View Synthesis with Sparse Labels:

python3 train_SSR_main.py --sparse_views --sparse_ratio 0.6

Sparse ratio here is the portion of dropped frames in the training sequence.

Pixel-wise Denoising Task:

python3 train_SSR_main.py --pixel_denoising --pixel_noise_ratio 0.5

We could also use a sparse set of frames along with denoising task:

python3 train_SSR_main.py --pixel_denoising --pixel_noise_ratio 0.5 --sparse_views --sparse_ratio 0.6

Region-wise Denoising task (For Replica Room2):

python3 train_SSR_main.py --region_denoising --region_noise_ratio 0.3

The argument uniform_flip corresponds to the two modes of "Even/Sort"in region-wise denoising task.

Super-Resolution Task:

For super-resolution with dense labels, please run

python3 train_SSR_main.py --super_resolution --sr_factor 8 --dense_sr

For super-resolution with sparse labels, please run

python3 train_SSR_main.py --super_resolution --sr_factor 8

Label Propagation Task:

For label propagation task with single-click seed regions, please run

python3 train_SSR_main.py --label_propagation --partial_perc 0

In order to improve reproducibility, for denoising and label-propagation tasks, we can also include --visualise_save and --load_saved to save/load randomly generated labels.

3D Reconstruction of Replica Scenes

We also provide codes for extracting 3D semantic mesh from a trained Seamntic-NeRF model.

python3 SSR/extract_colour_mesh.py --sem --mesh_dir PATH_TO_MESH --mesh_dir PATH_TO_MESH  --training_data_dir PATH_TO_TRAINING_DATA --save_dir PATH_TO_SAVE_DIR

For more demos and qualitative results, please check our project page and video.

Acknowledgements

Thanks nerf, nerf-pytorch and nerf_pl for providing nice and inspiring implementations of NeRF.

Citation

If you found this code/work to be useful in your own research, please consider citing the following:

@inproceedings{Zhi:etal:ICCV2021,
  title={In-Place Scene Labelling and Understanding with Implicit Scene Representation},
  author={Shuaifeng Zhi and Tristan Laidlow and Stefan Leutenegger and Andrew J. Davison},
  booktitle=ICCV,
  year={2021}
}

Contact

If you have any questions, please contact [email protected] or [email protected].

Owner
Shuaifeng Zhi
PhD student in Dyson Robotics Laboratory at Imperial College London
Shuaifeng Zhi
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021