An implementation of a discriminant function over a normal distribution to help classify datasets.

Overview

CS4044D Machine Learning Assignment 1

By Dev Sony, B180297CS

The question, report and source code can be found here.

Github Repo

Solution 1

Based on the formula given: Formula

The function has been defined:

def discriminant_function(x, mean, cov, d, P):
    if d == 1:
        output = -0.5*(x - mean) * (1/cov)
        output = output * (x - mean)
        output += -0.5*d*log(2*pi) - 0.5*log(cov) 

    else: 
        output = np.matmul(-0.5*(x - mean), np.linalg.inv(cov))
        output = np.matmul(output, (x - mean).T)
        output += -0.5*d*log(2*pi) - 0.5*log(np.linalg.det(cov)) 

    # Adding Prior Probability
    output += log(P)

    return output

It also accomdatees the case if only one feature is used, thus using only scalar quantities.

The variables can be configured based on the scenario. Here, it's assumed that prior probabilities are equally distributed and all features are taken:

n = len(data)
P = [1/n for i in range(n)]
d = len(data[0][0])

The input is the sample dataset, each set separated by the class they belong to as given below:

data = [
    # W1
    np.array([
        [-5.01, -8.12, -3.68],
        [-5.43, -3.48, -3.54],
        [1.08, -5.52, 1.66],
        [0.86, -3.78, -4.11],
        [-2.67, 0.63, 7.39],
        [4.94, 3.29, 2.08],
        [-2.51, 2.09, -2.59],
        [-2.25, -2.13, -6.94],
        [5.56, 2.86, -2.26],
        [1.03, -3.33, 4.33]
    ]),

    # W2
    np.array([
        [-0.91, -0.18, -0.05],
        [1.30, -2.06, -3.53],
        [-7.75, -4.54, -0.95],
        [-5.47, 0.50, 3.92],
        [6.14, 5.72, -4.85],
        [3.60, 1.26, 4.36],
        [5.37, -4.63, -3.65],
        [7.18, 1.46, -6.66],
        [-7.39, 1.17, 6.30],
        [-7.50, -6.32, -0.31]
    ]),

    # W3
    np.array([
        [5.35, 2.26, 8.13],
        [5.12, 3.22, -2.66],
        [-1.34, -5.31, -9.87],
        [4.48, 3.42, 5.19],
        [7.11, 2.39, 9.21],
        [7.17, 4.33, -0.98],
        [5.75, 3.97, 6.65],
        [0.77, 0.27, 2.41],
        [0.90, -0.43, -8.71],
        [3.52, -0.36, 6.43]
    ]) 
]

In order to classify the sample data, we first run the function through our sample dataset, classwise. On each sample, we find the class which gives the maximum output from its discriminant function.

A count and total count is maintained in order to find the success and failiure rates.

for j in range(n):
    print("\nData classes should be classified as:", j+1)
    total_count, count = 0, 0

    # Taking x as dataset belonging to class j + 1
    for x in data[j]:
        g_values = [0 for g in range(n)]        

        # Itering through each class' discriminant function
        for i in range(n):
            g_values[i] = discriminant_function(x, means[i], cov[i], d, P[i])

        # Now to output the maximum result 
        result = g_values.index(max(g_values)) + 1
        print(x, "\twas classified as", result)
        total_count, count = total_count + 1, (count + 1 if j == result - 1 else count)
        
    print("Success Rate:", (count/total_count)*100,"%")
    print("Fail Rate:", 100 - ((count/total_count))*100,"%")

Assuming that all classes have an equal prior probability (as per the configuration in the example picture), the following output is produced:

Output

Solution 2

Part (a) and (b)

In order to match the question, the configuration variables are altered.

  • data-1 for n indicates that only 2 classes will be considered (the final class would not be considered as its Prior probability is 0, implying that it wouldn't appear.)
  • We iterate through n + 1 in the outer loop as datasets of all 3 classes are being classified. (Althought class 3 is fully misclassified.)
  • The d value is changed to 1, indicating that only 1 feature will be used. (which is x1 )
n = len(data) - 1
P = [0.5, 0.5, 0]
d = 1

The configuration parameters being passed are also changed.

  • x[0] indicates that only x1 will be used.
  • means[i][0] indiciates that we need the mean only for x1).
  • cov[i][0][0] indicates the variance of feature x1).
for j in range(n + 1):
    print("\nData classes should be classified as:", j+1)
    total_count, count = 0, 0

    # Taking x as dataset belonging to class j + 1
    for x in data[j]:
        g_values = [0 for g in range(n)]        # Array for all discrminant function outputs.

        # Itering through each class' discriminant function
        for i in range(n):
            g_values[i] = discriminant_function(x[0], means[i][0], cov[i][0][0], d, P[i])

        # Now to output the maximum result 
        result = g_values.index(max(g_values)) + 1
        print(x, "\twas classified as", result)
        total_count, count = total_count + 1, (count + 1 if j == result - 1 else count)
        
    print("Success Rate:", (count/total_count)*100,"%")
    print("Fail Rate:", 100 - ((count/total_count))*100,"%")

This results in the following output:

Output1

Part (c)

Here, the configuration parameters are changed slightly.

  • d is changed to 2, as now we are considering the first and second features.
  • The matrix paramateres passed now include necessary values for the same reason.
n = len(data) - 1
P = [0.5, 0.5, 0]
d = 2

This results in the following output: Output2

Part (d)

Here again, the configurations are changed in a similiar fashion as in (c).

  • d values is changed to 3 as all three features are now considered.
  • The matrix paramaeteres are now passed without slicing as all values are important.
n = len(data) - 1
P = [0.5, 0.5, 0]
d = 3

The resuls in the following output:

Output2

Part (e)

On comparing the three outputs, using one or three features give more accurate results than using the first and second features.

Output3

The reason for this could be because the covariance with the third feature is much higher than the ones associated with the second feature.

Variance

Part (f)

In order to consider the possible configurations mentioned, the code takes an input vector and goes through all of them.

General Configuration values
n = len(data) - 1
P = [0.5, 0.5, 0]
g_values = [0 for i in range(n)]
Get input
x = list(map(float, input("Enter the input vector: ").strip().split()))
Case A
d = 1
print("Case A: Using only feature vector x1")
for i in range(n):
    g_values[i] = discriminant_function(x[0], means[i][0], cov[i][0][0], d, P[i])

result = g_values.index(max(g_values)) + 1
print(x, "\twas classified as", result)
Case B
d = 2
print("\nCase B: Using only feature vectors x1 and x2")
for i in range(n):
    g_values[i] = discriminant_function(x[0:2], means[i][0:2], cov[i][0:2, 0:2], d, P[i])

result = g_values.index(max(g_values)) + 1
print(x, "\twas classified as", result)
Case C
d = 3
print("\nCase C: Using all feature vectors")
for i in range(n):
    g_values[i] = discriminant_function(x, means[i], cov[i], d, P[i])

result = g_values.index(max(g_values)) + 1
print(x, "\twas classified as", result)

Here are the outputs for the 4 input vectors mentioned in the question: Output4

Owner
Dev Sony
I do stuff
Dev Sony
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022