This is the repo for Uncertainty Quantification 360 Toolkit.

Overview

UQ360

Build Status Documentation Status

The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncertainty, as well as capabilities to measure and improve UQ to streamline the development process. We provide a taxonomy and guidance for choosing these capabilities based on the user's needs. Further, UQ360 makes the communication method of UQ an integral part of development choices in an AI lifecycle. Developers can make a user-centered choice by following the psychology-based guidance on communicating UQ estimates, from concise descriptions to detailed visualizations.

The UQ360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.

We have developed the package with extensibility in mind. This library is still in development. We encourage the contribution of your uncertianty estimation algorithms, metrics and applications. To get started as a contributor, please join the #uq360-users or #uq360-developers channel of the AIF360 Community on Slack by requesting an invitation here.

Supported Uncertainty Evaluation Metrics

The toolbox provides several standard calibration metrics for classification and regression tasks. This includes Expected Calibration Error (Naeini et al., 2015), Brier Score (Murphy, 1973), etc for classification models. Regression metrics include Prediction Interval Coverage Probability (PICP) and Mean Prediction Interval Width (MPIW) among others. The toolbox also provides a novel operation-point agnostic approaches for the assessment of prediction uncertainty estimates called the Uncertainty Characteristic Curve (UCC). Several metrics and diagnosis tools such as reliability diagram (Niculescu-Mizil & Caruana, 2005) and risk-vs-rejection rate curves are provides which also support analysis by sub-groups in the population to study fairness implications of acting on given uncertainty estimates.

Supported Uncertainty Estimation Algorithms

UQ algorithms can be broadly classified as intrinsic or extrinsic depending on how the uncertainties are obtained from the AI models. Intrinsic methods encompass models that inherently provides an uncertainty estimate along with its predictions. The toolkit includes algorithms such as variational Bayesian neural networks (BNNs) (Graves, 2011), Gaussian processes (Rasmussen and Williams,2006), quantile regression (Koenker and Bassett, 1978) and hetero/homo-scedastic neuralnetworks (Kendall and Gal, 2017) which are models that fall in this category The toolkit also includes Horseshoe BNNs (Ghosh et al., 2019) that use sparsity promoting priors and can lead to better-calibrated uncertainties, especially in the small data regime. An Infinitesimal Jackknife (IJ) based algorithm (Ghosh et al., 2020)), provided in the toolkit, is a perturbation-based approach that perform uncertainty quantification by estimating model parameters under different perturbations of the original data. Crucially, here the estimation only requires the model to be trained once on the unperturbed dataset. For models that do not have an inherent notion of uncertainty built into them, extrinsic methods are employed to extract uncertainties post-hoc. The toolkit provides meta-models (Chen et al., 2019)that can be been used to successfully generate reliable confidence measures (in classification), prediction intervals (in regression), and to predict performance metrics such as accuracy on unseen and unlabeled data. For pre-trained models that captures uncertainties to some degree, the toolbox provides extrinsic algorithms that can improve the uncertainty estimation quality. This includes isotonic regression (Zadrozny and Elkan, 2001), Platt-scaling (Platt, 1999), auxiliary interval predictors (Thiagarajan et al., 2020), and UCC-Recalibration.

Setup

Supported Configurations:

OS Python version
macOS 3.7
Ubuntu 3.7
Windows 3.7

(Optional) Create a virtual environment

A virtual environment manager is strongly recommended to ensure dependencies may be installed safely. If you have trouble installing the toolkit, try this first.

Conda

Conda is recommended for all configurations though Virtualenv is generally interchangeable for our purposes. Miniconda is sufficient (see the difference between Anaconda and Miniconda if you are curious) and can be installed from here if you do not already have it.

Then, to create a new Python 3.7 environment, run:

conda create --name uq360 python=3.7
conda activate uq360

The shell should now look like (uq360) $. To deactivate the environment, run:

(uq360)$ conda deactivate

The prompt will return back to $ or (base)$.

Note: Older versions of conda may use source activate uq360 and source deactivate (activate uq360 and deactivate on Windows).

Installation

Clone the latest version of this repository:

(uq360)$ git clone https://github.ibm.com/UQ360/UQ360

If you'd like to run the examples and tutorial notebooks, download the datasets now and place them in their respective folders as described in uq360/datasets/data/README.md.

Then, navigate to the root directory of the project which contains setup.py file and run:

(uq360)$ pip install -e .

PIP Installation of Uncertainty Quantification 360

If you would like to quickly start using the UQ360 toolkit without cloning this repository, then you can install the uq360 pypi package as follows.

(your environment)$ pip install uq360

If you follow this approach, you may need to download the notebooks in the examples folder separately.

Using UQ360

The examples directory contains a diverse collection of jupyter notebooks that use UQ360 in various ways. Both examples and tutorial notebooks illustrate working code using the toolkit. Tutorials provide additional discussion that walks the user through the various steps of the notebook. See the details about tutorials and examples here.

Citing UQ360

A technical description of UQ360 is available in this paper. Below is the bibtex entry for this paper.

@misc{uq360-june-2021,
      title={Uncertainty Quantification 360: A Holistic Toolkit for Quantifying 
      and Communicating the Uncertainty of AI}, 
      author={Soumya Ghosh and Q. Vera Liao and Karthikeyan Natesan Ramamurthy 
      and Jiri Navratil and Prasanna Sattigeri 
      and Kush R. Varshney and Yunfeng Zhang},
      year={2021},
      eprint={2106.01410},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}

Acknowledgements

UQ360 is built with the help of several open source packages. All of these are listed in setup.py and some of these include:

License Information

Please view both the LICENSE file present in the root directory for license information.

Owner
International Business Machines
International Business Machines
A pomodoro app written in Python

Pomodoro It's a pomodoro app written in Python. You can minimize it while you're working if you want to, it'll pop up on your screen when the timer is

YiฤŸit 1 Dec 20, 2021
A simple but complete exercise to learning Python

ResourceReservationProject This is a simple but complete exercise to learning Python. Task and flow chart We are going to do a new fork of the existin

2 Nov 14, 2022
Python script for converting obsidian md-file to html (recursively adds all link/images)

ObsidianToHtmlConverter I made a small python script for converting obsidian md-file to static (local) html (recursively adds all link/images) I made

47 Jan 03, 2023
Make your Discord Account Online 24/7!

Online-Forever Make your Discord Account Online 24/7! A Code written in Python that helps you to keep your account 24/7. The main.py is the main file.

SealedSaucer 0 Mar 16, 2022
This Open-Source project is great for sensor capture and storage solutions.

Phase 1 This project helps developers in the creation of extended realities that communicate with Arduino and require the security of blockchain stora

Wolfberry, LLC 10 Dec 28, 2022
Credit Card Fraud Detection

Credit Card Fraud Detection For this project, I used the datasets from the kaggle competition called IEEE-CIS Fraud Detection. The competition aims to

RayWu 4 Jun 21, 2022
Penelope Shell Handler

penelope Penelope is an advanced shell handler. Its main aim is to replace netcat as shell catcher during exploiting RCE vulnerabilities. It works on

293 Dec 30, 2022
๐Ÿ‘€ nothing to see here

Woofy Woofy is blue dog companion token of YFI (Wifey) It utilizes a special Woof bonding curve which allows two-way conversion between the tokens. Th

Yearn Finance 36 Mar 14, 2022
A simple, fantasy and fast note taking program.

notes A simple, fantasy and fast note taking program Installation This program supposed to run in linux and may have some bugs on windows or any other

Ali Hosseinverdi 1 Apr 06, 2022
Org agenda in the console

This Python script reads an org agenda file (i.e. a regular org file with some active dates) and displays an interactive and colored year calendar with detailed information for each day when the mous

Nicolas P. Rougier 113 Jan 03, 2023
Python Library to get fast extensive Dummy Data for testing

Dumda Python Library to get fast extensive Dummy Data for testing https://pypi.org/project/dumda/ Installation pip install dumda Usage: Cities from d

Oliver B. 0 Dec 27, 2021
Stocks Trading News Alert Using Python

Stocks-Trading-News-Alert-Using-Python Ever Thought of Buying Shares of your Dream Company, When their stock price got down? But It is not possible to

Ayush Verma 3 Jul 29, 2022
Islam - This is a simple python script.In this script I have written all the suras of Al Quran. As a result, by using this script, you can know the number of any sura at the moment.

Introduction: If you want to know sura number of al quran by just typing the name of sura than you can use this script. Usage in termux: $ pkg install

Fazle Rabbi 1 Jan 02, 2022
VacationCycleLogicBackEnd - Vacation Cycle Logic BackEnd With Python

Vacation Cycle Logic BackEnd Getting Started Existing virtualenv If your project

Mohamed Gamal 0 Jan 03, 2022
๐Ÿ A Python lib for (de)serializing Python objects to/from JSON

Turn Python objects into dicts or (json)strings and back No changes required to your objects Easily customizable and extendable Works with dataclasses

Ramon Hagenaars 253 Dec 14, 2022
Python 100daysofcode

#python #100daysofcode Python is a simple, general purpose ,high level & object-oriented programming language even it's is interpreted scripting langu

Tara 1 Feb 10, 2022
Task dispatcher for Postgres

Features a task being ran as an OS process supports task queue with priority and process limit per node fully database driven (a worker and task can b

2 Dec 06, 2021
For radiometrically calibrating and PSF deconvolving IRIS data

irispreppy For radiometrically calibrating and PSF deconvolving IRIS data. I dislike how I need to own proprietary software (IDL) just to simply prepa

Aaron W. Peat 4 Nov 01, 2022
Back-end API for the reternal framework

RE:TERNAL RE:TERNAL is a centralised purple team simulation platform. Reternal uses agents installed on a simulation network to execute various known

Joey Dreijer 7 Apr 15, 2022
A set of scripts for a two-step procedure to measure the value of access to destinations across several modes of travel within a geographic area.

A set of scripts for a two-step procedure to measure the value of access to destinations across several modes of travel within a geographic area.

Institute for Transportation and Development Policy 2 Oct 16, 2022