This is the repo for Uncertainty Quantification 360 Toolkit.

Overview

UQ360

Build Status Documentation Status

The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncertainty, as well as capabilities to measure and improve UQ to streamline the development process. We provide a taxonomy and guidance for choosing these capabilities based on the user's needs. Further, UQ360 makes the communication method of UQ an integral part of development choices in an AI lifecycle. Developers can make a user-centered choice by following the psychology-based guidance on communicating UQ estimates, from concise descriptions to detailed visualizations.

The UQ360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.

We have developed the package with extensibility in mind. This library is still in development. We encourage the contribution of your uncertianty estimation algorithms, metrics and applications. To get started as a contributor, please join the #uq360-users or #uq360-developers channel of the AIF360 Community on Slack by requesting an invitation here.

Supported Uncertainty Evaluation Metrics

The toolbox provides several standard calibration metrics for classification and regression tasks. This includes Expected Calibration Error (Naeini et al., 2015), Brier Score (Murphy, 1973), etc for classification models. Regression metrics include Prediction Interval Coverage Probability (PICP) and Mean Prediction Interval Width (MPIW) among others. The toolbox also provides a novel operation-point agnostic approaches for the assessment of prediction uncertainty estimates called the Uncertainty Characteristic Curve (UCC). Several metrics and diagnosis tools such as reliability diagram (Niculescu-Mizil & Caruana, 2005) and risk-vs-rejection rate curves are provides which also support analysis by sub-groups in the population to study fairness implications of acting on given uncertainty estimates.

Supported Uncertainty Estimation Algorithms

UQ algorithms can be broadly classified as intrinsic or extrinsic depending on how the uncertainties are obtained from the AI models. Intrinsic methods encompass models that inherently provides an uncertainty estimate along with its predictions. The toolkit includes algorithms such as variational Bayesian neural networks (BNNs) (Graves, 2011), Gaussian processes (Rasmussen and Williams,2006), quantile regression (Koenker and Bassett, 1978) and hetero/homo-scedastic neuralnetworks (Kendall and Gal, 2017) which are models that fall in this category The toolkit also includes Horseshoe BNNs (Ghosh et al., 2019) that use sparsity promoting priors and can lead to better-calibrated uncertainties, especially in the small data regime. An Infinitesimal Jackknife (IJ) based algorithm (Ghosh et al., 2020)), provided in the toolkit, is a perturbation-based approach that perform uncertainty quantification by estimating model parameters under different perturbations of the original data. Crucially, here the estimation only requires the model to be trained once on the unperturbed dataset. For models that do not have an inherent notion of uncertainty built into them, extrinsic methods are employed to extract uncertainties post-hoc. The toolkit provides meta-models (Chen et al., 2019)that can be been used to successfully generate reliable confidence measures (in classification), prediction intervals (in regression), and to predict performance metrics such as accuracy on unseen and unlabeled data. For pre-trained models that captures uncertainties to some degree, the toolbox provides extrinsic algorithms that can improve the uncertainty estimation quality. This includes isotonic regression (Zadrozny and Elkan, 2001), Platt-scaling (Platt, 1999), auxiliary interval predictors (Thiagarajan et al., 2020), and UCC-Recalibration.

Setup

Supported Configurations:

OS Python version
macOS 3.7
Ubuntu 3.7
Windows 3.7

(Optional) Create a virtual environment

A virtual environment manager is strongly recommended to ensure dependencies may be installed safely. If you have trouble installing the toolkit, try this first.

Conda

Conda is recommended for all configurations though Virtualenv is generally interchangeable for our purposes. Miniconda is sufficient (see the difference between Anaconda and Miniconda if you are curious) and can be installed from here if you do not already have it.

Then, to create a new Python 3.7 environment, run:

conda create --name uq360 python=3.7
conda activate uq360

The shell should now look like (uq360) $. To deactivate the environment, run:

(uq360)$ conda deactivate

The prompt will return back to $ or (base)$.

Note: Older versions of conda may use source activate uq360 and source deactivate (activate uq360 and deactivate on Windows).

Installation

Clone the latest version of this repository:

(uq360)$ git clone https://github.ibm.com/UQ360/UQ360

If you'd like to run the examples and tutorial notebooks, download the datasets now and place them in their respective folders as described in uq360/datasets/data/README.md.

Then, navigate to the root directory of the project which contains setup.py file and run:

(uq360)$ pip install -e .

PIP Installation of Uncertainty Quantification 360

If you would like to quickly start using the UQ360 toolkit without cloning this repository, then you can install the uq360 pypi package as follows.

(your environment)$ pip install uq360

If you follow this approach, you may need to download the notebooks in the examples folder separately.

Using UQ360

The examples directory contains a diverse collection of jupyter notebooks that use UQ360 in various ways. Both examples and tutorial notebooks illustrate working code using the toolkit. Tutorials provide additional discussion that walks the user through the various steps of the notebook. See the details about tutorials and examples here.

Citing UQ360

A technical description of UQ360 is available in this paper. Below is the bibtex entry for this paper.

@misc{uq360-june-2021,
      title={Uncertainty Quantification 360: A Holistic Toolkit for Quantifying 
      and Communicating the Uncertainty of AI}, 
      author={Soumya Ghosh and Q. Vera Liao and Karthikeyan Natesan Ramamurthy 
      and Jiri Navratil and Prasanna Sattigeri 
      and Kush R. Varshney and Yunfeng Zhang},
      year={2021},
      eprint={2106.01410},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}

Acknowledgements

UQ360 is built with the help of several open source packages. All of these are listed in setup.py and some of these include:

License Information

Please view both the LICENSE file present in the root directory for license information.

Owner
International Business Machines
International Business Machines
HOWTO: Downgrade from nYNAB to YNAB4

HOWTO: Downgrade from nYNAB to YNAB4 This page explains how to move from nYNAB to YNAB4 while retaining as much information as possible. See Appendix

Tobias Kunze 10 Dec 29, 2022
This is an example manipulation package of for a robot manipulator based on Drake with ROS2.

This is an example manipulation package of for a robot manipulator based on Drake with ROS2.

Sotaro Katayama 1 Oct 21, 2021
Load dependent libraries dynamically.

dypend dypend Load dependent libraries dynamically. A few days ago, I encountered many users feedback in an open source project. The Problem is they c

Louis 5 Mar 02, 2022
Opendrop - An open Apple AirDrop implementation written in Python

OpenDrop: an Open Source AirDrop Implementation OpenDrop is a command-line tool that allows sharing files between devices directly over Wi-Fi. Its uni

Secure Mobile Networking Lab 7.5k Jan 03, 2023
Created a Python Keylogger script.

Python Script Simple Keylogger Script WHAT IS IT? Created a Python Keylogger script. HOW IT WORKS Once the script has been executed, it will automatic

AC 0 Dec 12, 2021
Lightweight and Modern kernel for VK Bots

This is the kernel for creating VK Bots written in Python 3.9

Yrvijo 4 Nov 21, 2021
Buffer Overflows

BOF Buffer Overflows 1. BOF tips Practice using mona.py Download vulnerable exe from Exploit DB.

Vinh Nguyễn 27 Dec 08, 2022
Absolute solvation free energy calculations with OpenFF and OpenMM

ABsolute SOLVantion Free Energy Calculations The absolv framework aims to offer a simple API for computing the change in free energy when transferring

7 Dec 07, 2022
Forward RSS feeds to your email address, community maintained

Getting Started With rss2email We highly recommend that you watch the rss2email project on GitHub so you can keep up to date with the latest version,

248 Dec 28, 2022
Jannik Ramrath 1 Feb 05, 2022
Python script to combine the statistical results of a TOPAS simulation that was split up into multiple batches.

topas-merge-simulations Python script to combine the statistical results of a TOPAS simulation that was split up into multiple batches At the top of t

Sebastian Schäfer 1 Aug 16, 2022
KeyBrowser: A program launches a browser and a keylogger at the same time, is used to retrieve a person's personal information

KeyBrowser: A program launches a browser and a keylogger at the same time, is used to retrieve a person's personal information

3 Oct 16, 2022
Pdraw - Generate Deterministic, Procedural Artwork from Arbitrary Text

pdraw.py: Generate Deterministic, Procedural Artwork from Arbitrary Text pdraw a

Brian Schrader 2 Sep 12, 2022
Estimating the potential photovoltaic production of buildings (in Berlin)

The following people contributed equally to this repository (in alphabetical order): Daniel Bumke JJX Corstiaen Versteegh This repository is forked on

Daniel Bumke 6 Feb 18, 2022
A Linux program to create a Windows USB stick installer from a real Windows DVD or image.

WoeUSB-ng A Linux program to create a Windows USB stick installer from a real Windows DVD or image. This package contains two programs: woeusb: A comm

Longinus 1 Nov 19, 2021
E-Paper display loop with plugins

PaperPi V3 NOTE This version of PaperPi is under heavy development and is not ready for the average user. We are working on adding more screen compati

Aaron Ciuffo 34 Dec 30, 2022
Advanced Keylogger in Python

Advanced Keylogger in Python Important Disclaimer: The author will not be held r

Suvanth Erranki 1 Feb 07, 2022
This is a Fava extension to display a grouped portfolio view in Fava for a set of Beancount accounts.

Fava Portfolio Summary This is a Fava extension to display a grouped portfolio view in Fava for a set of Beancount accounts. It can also calculate MWR

18 Dec 26, 2022
It was created to conveniently respond to events such as donation, follow, and hosting using the Alert Box provided by twip to streamers

This library is not an official library of twip. It was created to conveniently respond to events such as donation, follow, and hosting using the Alert Box provided by twip to streamers.

junah201 8 Nov 19, 2022
Calculatrix is a project where I'll create plenty of calculators in a lot of differents languages

Calculatrix What is Calculatrix ? Calculatrix is a project where I'll create plenty of calculators in a lot of differents languages. I know this sound

1 Jun 14, 2022