This repo is customed for VisDrone.

Overview

Object Detection for VisDrone(无人机航拍图像目标检测)

My environment

1、Windows10 (Linux available)
2、tensorflow >= 1.12.0
3、python3.6 (anaconda)
4、cv2
5、ensemble-boxes(pip install ensemble-boxes)

Datasets(XML format for training set)

(1).Datasets is available on https://github.com/VisDrone/VisDrone-Dataset
(2).Please download xml annotations on Baidu Yun (提取码: ia3f), or Google Drive, and configure it in ./core/config/cfgs.py
(3).You can also use ./data/visdrone2xml.py to generate your visdrone xml files, modify the path information.

training-set format:

├── VisDrone2019-DET-train
│     ├── Annotation(xml format)
│     ├── JPEGImages

Pretrained Models(ResNet50vd, 101vd)

Please download pretrained models on Baidu Yun (提取码: krce), or Google Drive, then put it into ./data/pretrained_weights

Train

Modify the parameters in ./core/config/cfgs.py
python train_step.py

Eval

Modify the parameters in ./core/config/cfgs.py
python eval_visdrone.py, it will get txt format file, then use official matlab tools to eval the final results.
python eval_model_ensemble.py. Before the running of this file, you should set NORMALIZED_RESULTS_FOR_MODEL_ENSEMBLE=True in cfgs.py and then run eval_visdrone.py to get normalized txt result.

Visualization

Modify the parameters in ./core/config/cfgs.py
python image_demo.py, it will get visualized results.

Visualized Result (multi-scale training+multi-scale testing) 1

Test Result(Validation set):

1. ResNet50-vd

Name maxDets Result(s/m)
Average Precision (AP) @( IoU=0.50:0.95) maxDets=500 31.26%/35.1%
Average Precision (AP) @( IoU=0.50 ) maxDets=500 56.44%/60.29%
Average Precision (AP) @( IoU=0.75 ) maxDets=500 30.13%/35.42%
Average Recall (AR) @( IoU=0.50:0.95) maxDets= 1 0.78%/0.58%
Average Recall (AR) @( IoU=0.50:0.95) maxDets= 10 6.62%/6.05%
Average Recall (AR) @( IoU=0.50:0.95) maxDets=100 38.21%/40.99%
Average Recall (AR) @( IoU=0.50:0.95) maxDets=500 48.41%/53%
"s" means single-scale training + single-scale testing; "m"means multi-scale training + multi-scale testing

2. ResNet101-vd

Name maxDets Result(s/m)
Average Precision (AP) @( IoU=0.50:0.95) maxDets=500 31.7%/35.98%
Average Precision (AP) @( IoU=0.50 ) maxDets=500 56.94%/61.64%
Average Precision (AP) @( IoU=0.75 ) maxDets=500 30.59%/36.13%
Average Recall (AR) @( IoU=0.50:0.95) maxDets= 1 0.67%/0.61%
Average Recall (AR) @( IoU=0.50:0.95) maxDets= 10 6.29%/6.13%
Average Recall (AR) @( IoU=0.50:0.95) maxDets=100 38.66%/42.33%
Average Recall (AR) @( IoU=0.50:0.95) maxDets=500 49.29%/53.68%

3. Model Ensemble (ResNet101-vd+ResNet50-vd)

Name maxDets Result
Average Precision (AP) @( IoU=0.50:0.95) maxDets=500 36.76%
Average Precision (AP) @( IoU=0.50 ) maxDets=500 62.33%
Average Precision (AP) @( IoU=0.75 ) maxDets=500 37.41%
Average Recall (AR) @( IoU=0.50:0.95) maxDets= 1 0.59%
Average Recall (AR) @( IoU=0.50:0.95) maxDets= 10 6.06%
Average Recall (AR) @( IoU=0.50:0.95) maxDets=100 42.57%
Average Recall (AR) @( IoU=0.50:0.95) maxDets=500 54.53%
You can download trained weights(ResNet50vd, 101vd) on Baidu Yun (提取码: 9u9m), or Google Drive, then put it into ./saved_weights

Reference

1、https://github.com/DetectionTeamUCAS/Faster-RCNN_Tensorflow
2、https://github.com/open-mmlab/mmdetection
3、https://github.com/ZFTurbo/Weighted-Boxes-Fusion
4、https://github.com/kobiso/CBAM-tensorflow-slim
5、https://github.com/SJTU-Thinklab-Det/DOTA-DOAI
6、https://github.com/Viredery/tf-eager-fasterrcnn
7、https://github.com/VisDrone/VisDrone2018-DET-toolkit
8、https://github.com/YunYang1994/tensorflow-yolov3
9、https://github.com/zhpmatrix/VisDrone2018

A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022