Cowsay - A rewrite of cowsay in python

Related tags

Deep Learningcowsay
Overview

Python Cowsay

A rewrite of cowsay in python. Allows for parsing of existing .cow files.

Install

pip install python-cowsay

Usage

The classic cowsay can be generated by the cowsay or cowthink functions:

from cowsay import cowsay

message = """
The most remarkable thing about my mother is that for thirty years she served
the family nothing but leftovers.  The original meal has never been found.
		-- Calvin Trillin
""".strip()
print(cowsay(message))

Will yield:

 __________________________________________ 
/ The most remarkable thing about my       \
| mother is that for thirty years she      |
| served the family nothing but leftovers. |
| The original meal has never been found.  |
|                                          |
\ -- Calvin Trillin                        /
 ------------------------------------------ 
        \   ^__^
         \  (oo)\_______
            (__)\       )\/\
                ||----w |
                ||     ||

The parameters for these functions are:

  • message – a string to wrap in the text bubble
  • cow='default' – the name of the cow (valid names from list_cows)
  • preset=None – the original cowsay presets: -bggpstwy
  • eyes=Option.eyes – A custom eye string
  • tongue=Option.tongue – A custom tongue string
  • width=40 – The width of the text bubble
  • wrap_text=True – Whether text should be wrapped in the bubble
  • cowfile=None – A custom string representing a cow

Other Functions

The available builtin cows can be found with list_cows. A cow can be chosen randomly from this list with get_random_cow.

Using Your Own Cows

A custom .cow file can be parsed using the read_dot_cow function which takes a TextIO stream. I.e., You can either create a TextIO from a string or read a file.

The read_dot_cow will look for the first heredoc in the steam and extract the heredoc contents. If no heredoc exists, the whole stream is used instead. Escape characters are then escaped. The default escape characters can be changed by passing in an optional escape dictionary parameter mapping escape codes to their chars.

For example:

from io import StringIO

from cowsay import read_dot_cow, cowthink

cow = read_dot_cow(StringIO("""
$the_cow = <<EOC;
         $thoughts
          $thoughts
           ___
          (o o)
         (  V  )
        /--m-m-
EOC
"""))
message = """
Nothing is illegal if one hundred businessmen decide to do it.
        -- Andrew Young
""".strip()
print(cowthink(message, cowfile=cow))

Will yield:

 ___________________________________ 
( Nothing is illegal if one hundred )
( businessmen decide to do it.      )
(                                   )
( -- Andrew Young                   )
 ----------------------------------- 
         o
          o
           ___
          (o o)
         (  V  )
        /--m-m-
Owner
James Ansley
PhD candidate at the University of Auckland.
James Ansley
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021

MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale

Dima Smirnov 28 Nov 18, 2022
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022